On the Construction of Contact Submanifolds with Prescribed Topology

نویسندگان

  • A. IBORT
  • D. MARTÍNEZ-TORRES
  • F. PRESAS
  • R. Paoletti
چکیده

We prove the existence of contact submanifolds realizing the Poincaré dual of the top Chern class of a complex vector bundle over a closed contact manifold. This result is analogue in the contact category to Donaldson’s construction of symplectic submanifolds. The main tool in the construction is to show the existence of sequences of sections which are asymptotically holomorphic in an appropiate sense and that satisfy a transversality with estimates property directly in the contact category. The description of the obtained contact submanifolds allows us to prove an extension of the Lefschetz hyperplane theorem which completes their topological characterization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form

In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition  h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.

متن کامل

Application of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold

In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1‎, ‎f_2‎, ‎f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition‎. ‎Finally‎, ‎we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...

متن کامل

Non existence of totally contact umbilical‎ ‎slant lightlike submanifolds of indefinite Sasakian manifolds

‎We prove that there do not exist totally contact umbilical‎ ‎proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic‎ ‎proper slant lightlike submanifolds‎. ‎We also prove that there do‎ ‎not exist totally contact umbilical proper slant lightlike‎ ‎submanifolds of indefinite Sasakian space forms‎.

متن کامل

Contact CR-Warped product submanifolds in Kenmotsu space forms

Abstract: In the present paper, we give a necessary and sufficient condition for contact CR-warped product to be contact CR-product in Kenmotsu space forms.

متن کامل

Topology of Riemannian Submanifolds with Prescribed Boundary

We prove that a smooth compact immersed submanifold of codimension 2 in R, n ≥ 3, bounds at most finitely many topologically distinct compact nonnegatively curved hypersurfaces. Analogous results for complete fillings of arbitrary Riemannian submanifolds are obtained as well. On the other hand, we show that these finiteness theorems may not hold if the codimenion is too high, or the prescribed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001