Machine Translation using Neural Networks and Finite-State Models*
نویسندگان
چکیده
Both Neural Networks and Finite-State Models have recently proved to be encouraging approaches to Example-Based Machine Translation. This paper compares the translation performances achieved with the two techniques as well as the corresponding resources required. To this end, both Elman Simple Recurrent Nets and Subsequential Transducers were trained to tackle a simple pseudo-natural machine translation task.
منابع مشابه
7 th Int . Conf . on Theoret . and Methodol . Issues in Mach . Trans . TMI 97 . Machine
Both Neural Networks and Finite-State Models have recently proved to be encouraging approaches to Example-Based Machine Translation. This paper compares the translation performances achieved with the two techniques as well as the corresponding resources required. To this end, both Elman Simple Recurrent Nets and Subsequential Transducers were trained to tackle a simple pseudo-natural machine tr...
متن کاملThe Speech Recognition and Machine Translation System of IOIT for IWSLT 2013
This paper describes the Automatic Speech Recognition (ASR) and Machine Translation (MT) systems developed by IOIT for the evaluation campaign of IWSLT2013. For the ASR task, using Kaldi toolkit, we developed the system based on weighted finite state transducer. The system is constructed by applying several techniques, notably, subspace Gaussian mixture models, speaker adaptation, discriminativ...
متن کاملEvaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملPairwise Neural Machine Translation Evaluation
We present a novel framework for machine translation evaluation using neural networks in a pairwise setting, where the goal is to select the better translation from a pair of hypotheses, given the reference translation. In this framework, lexical, syntactic and semantic information from the reference and the two hypotheses is compacted into relatively small distributed vector representations, a...
متن کامل