Changes in expiratory muscle function following spinal cord section.

نویسندگان

  • Krzysztof E Kowalski
  • Jaroslaw R Romaniuk
  • Anthony F DiMarco
چکیده

Following spinal cord injury, muscles below the level of injury develop variable degrees of disuse atrophy. The present study assessed the physiological changes of the expiratory muscles in a cat model of spinal cord injury. Muscle fiber typing, cross-sectional area, muscle weight, and changes in pressure-generating capacity were assessed in five cats spinalized at the T(6) level. Airway pressure (P)-generating capacity was monitored during lower thoracic spinal cord stimulation before and 6 mo after spinalization. These parameters were also assessed in five acute animals, which served as controls. In spinalized animals, P fell from 41 +/- l to 28 +/- 3 cm H2O (means +/- SE; P < 0.001). Muscle weight of the external oblique, internal oblique, transversus abdominis, and internal intercostal muscles decreased significantly (P < 0.05 for each). Muscle weight of the external oblique, internal oblique, transversus abdominis, and internal intercostal, but not rectus abdominis (RA), correlated linearly with P (r > 0.7 for each; P < 0.05 for each). Mean muscle fiber cross-sectional area of these muscles was significantly smaller (P < 0.05 for each; except RA) and also correlated linearly with P (r > 0.55 for each; P < 0.05 for each, except RA). In spinalized animals, the expiratory muscles demonstrated a significant increase in the population of fast muscle fibers. These results indicate that, following spinalization, 1) the expiratory muscles undergo significant atrophy and fiber-type transformation and 2) the P-generating capacity of the expiratory muscles falls significantly secondary to reductions in muscle mass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of the Occurrence and Mechanisms of Induction of Osteoporosis Following Spinal Cord Injury

Introduction: Spinal cord injury (SCI) causes devastating injuries in patients. The main mechanisms of the pathogenesis of secondary injury include nerve degeneration, gliosis, and inflammation. Spinal cord injury induces a disorder or failure in several organs due to the vital role of the spinal cord in regulating bodily functions. Osteoporosis is a consequence of spinal cord injury that occur...

متن کامل

Mechanism of expiratory muscle activation during lower thoracic spinal cord stimulation.

Lower thoracic spinal cord stimulation (SCS) may be a useful method to restore an effective cough mechanism. In dogs, two groups of studies were performed to evaluate the mechanism of the expiratory muscle activation during stimulation at the T(9)-T(10) level, which results in the greatest changes in airway pressure. In one group, expiratory muscle activation was monitored by evoked muscle comp...

متن کامل

Effects of chronic electrical stimulation on paralyzed expiratory muscles.

Following spinal cord injury, the expiratory muscles develop significant disuse atrophy characterized by reductions in their weight, fiber cross-sectional area, and force-generating capacity. We determined the extent to which these physiological alterations can be prevented with electrical stimulation. Because a critical function of the expiratory muscles is cough generation, an important goal ...

متن کامل

Changes in Urinary Bladder Structure and Systemic Inflammation Response Following Incomplete Transection versus Contusion Spinal Cord Injury in Rat Model

Objective- The current study was conducted to evaluate changes in the urinary bladder structure and leukocyte profile as an important index of the systemic inflammation response for two different types of spinal cord injury (SCI) in a rat model. Design- Experimental Study.Animals- Forty adult healthy female Sprague-Dawley rats.<br /...

متن کامل

Time-courses of lung function and respiratory muscle pressure generating capacity after spinal cord injury: a prospective cohort study.

OBJECTIVE To investigate the time-courses of lung function and respiratory muscle pressure generating capacity after spinal cord injury. DESIGN Multi-centre, prospective cohort study. SUBJECTS One hundred and nine subjects with recent, motor complete spinal cord injury. METHODS Lung function and respiratory muscle pressure generating capacity were measured at first mobilization, at discha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 102 4  شماره 

صفحات  -

تاریخ انتشار 2007