Hall-Littlewood functions at roots of unity

نویسنده

  • Francois Descouens
چکیده

Hall-Littlewood functions indexed by rectangular partitions, specialized at primitive roots of unity, can be expressed as plethysms. We propose a combinatorial proof of this formula using A. Schilling’s bijection between ribbon tableaux and ribbon rigged configurations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribbon tableaux, ribbon rigged configurations and Hall-Littlewood functions at roots of unity

Hall-Littlewood functions indexed by rectangular partitions, specialized at primitive roots of unity, can be expressed as plethysms. We propose a combinatorial proof of this formula using Schilling’s bijection between ribbon tableaux and ribbon rigged configurations.

متن کامل

Macdonald polynomials at roots of unity

The aim of this note is to give some factorisation formulas for different versions of the Macdonald polynomials when the parameter t is specialized at roots of unity, generalizing those given in [LLT1] for Hall-Littlewood functions. Résumé. Le but de cette note est de donner quelques formules de factorisations pour différentes versions des polynômes de Macdonald lorsque le paramètre t est spéci...

متن کامل

The Deformed Virasoro Algebra at Roots of Unity

We discuss some aspects of the representation theory of the deformed Virasoro algebra Virp,q. In particular, we give a proof of the formula for the Kac determinant and then determine the center of Virp,q for q a primitive N -th root of unity. We derive explicit expressions for the generators of the center in the limit t = qp → ∞ and elucidate the connection to the Hall-Littlewood symmetric func...

متن کامل

Factorization formulas for MacDonald polynomials

In [LLT1], Lascoux, Leclerc and Thibon give some factorisation formulas for Hall-Littlewood functions when the parameter q is specialized at roots of unity. They also give formulas in terms of cyclic characters of the symmetric group. In this article, we give a generalization of these specializations for different versions of the Macdonald polynomials and we obtain similar formulas in terms of ...

متن کامل

QUANTUM COHOMOLOGY AND THE k-SCHUR BASIS

We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to ŝu( ) are shown to b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007