Blind Compensation of I/Q Impairments in Wireless Transceivers

نویسندگان

  • Mohsin Aziz
  • Fadhel M. Ghannouchi
  • Mohamed Helaoui
چکیده

The majority of techniques that deal with the mitigation of in-phase and quadrature-phase (I/Q) imbalance at the transmitter (pre-compensation) require long training sequences, reducing the throughput of the system. These techniques also require a feedback path, which adds more complexity and cost to the transmitter architecture. Blind estimation techniques are attractive for avoiding the use of long training sequences. In this paper, we propose a blind frequency-independent I/Q imbalance compensation method based on the maximum likelihood (ML) estimation of the imbalance parameters of a transceiver. A closed-form joint probability density function (PDF) for the imbalanced I and Q signals is derived and validated. ML estimation is then used to estimate the imbalance parameters using the derived joint PDF of the output I and Q signals. Various figures of merit have been used to evaluate the efficacy of the proposed approach using extensive computer simulations and measurements. Additionally, the bit error rate curves show the effectiveness of the proposed method in the presence of the wireless channel and Additive White Gaussian Noise. Real-world experimental results show an image rejection of greater than 30 dB as compared to the uncompensated system. This method has also been found to be robust in the presence of practical system impairments, such as time and phase delay mismatches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RF Transceiver Design for MIMO Wireless Communications

This practical resource offers a thorough examination of RF transceiver design for MIMO communications. Offering a practical view on MIMO wireless systems, this book extends fundamental concepts on classic wireless transceiver design techniques to MIMO transceivers. This helps reader gain a very comprehensive understanding of the subject. This in-depth volume describes many theoretical and impl...

متن کامل

Digitally Assisted Analog and RF Circuits

In this paper, the importance and perspective for the digitally-assisted analog and RF circuits are discussed, especially related to wireless transceivers. Digital calibration techniques for compensating I/Q mismatch, IM2, and LO impairments in cellular, 2.4GHz WiFi, and 60GHz WiGig transceivers are introduced with detailed analysis and circuit implementations. Future technology directions such...

متن کامل

Compensation of IQ-Imbalance and Phase Noise in MIMO-OFDM Systems

The degrading effect of RF impairments on the performance of wireless communication systems is more pronounced in MIMO-OFDM transmission. Two of the most common impairments that significantly limit the performance of MIMO-OFDM transceivers are IQ-imbalance and phase noise. Low-complexity estimation and compensation techniques that can jointly remove the effect of these impairments are highly de...

متن کامل

Compensation of IQ-Imbalance and Phase Noise in MIMO-OFDM Systems

The degrading effect of RF impairments on the performance of wireless communication systems is more pronounced in MIMO-OFDM transmission. Two of the most common impairments that significantly limit the performance of MIMO-OFDM transceivers are IQ-imbalance and phase noise. Low-complexity estimation and compensation techniques that can jointly remove the effect of these impairments are highly de...

متن کامل

A Virtual Channel-Based Approach to Compensation of I/Q Imbalances in MIMO-OFDM Systems

Multiple-input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) scheme has been considered as the most promising physical-layer architecture for the future wireless systems to provide high-speed communications. However, the performance of the MIMO-OFDM system may be degraded by in-phase/quadrature-phase (I/Q) imbalances caused by component imperfections in the analog fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017