Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity

نویسنده

  • Isao Ishida
چکیده

We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500) and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Statistical trend analysis and forecast modeling of air pollutants

The study provides a statistical trend analysis of different air pollutants using Mann-Kendall and Sen’s slope estimator approach on past pollutants statistics from air quality index station of Varanasi, India. Further, using autoregressive integrated moving average model, future values of air pollutant levels are predicted. Carbon monoxide, nitrogen dioxide, sulphur dioxide, particu...

متن کامل

Archimedean Copulas and Temporal Dependence

A central aspect of time series analysis is the modeling of dependence over time. Workhorse time series models such as the autoregressive moving average (ARMA) model popularized by Box and Jenkins (1970), the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), or the autoregressive conditional duration (ACD) model of Engle and Russell (...

متن کامل

Generating Volatility Forecasts from Value at Risk Estimates

Statistical volatility models rely on the assumption that the shape of the conditional distribution is fixed over time and that it is only the volatility that varies. The recently proposed conditional autoregressive value at risk (CAViaR) models require no such assumption, and allow quantiles to be modelled directly in an autoregressive framework. Although useful for risk management, CAViaR mod...

متن کامل

A long range dependent model with nonlinear innovations for simulating daily river flows

We present the analysis aimed at the estimation of flood risks of Tisza River in Hungary on the basis of daily river discharge data registered in the last 100 years. The deseasonalised series has skewed and leptokurtic distribution and various methods suggest that it possesses substantial long memory. This motivates the attempt to fit a fractional ARIMA model with non-Gaussian innovations as a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015