Cilostazol Attenuates Ovariectomy-Induced Bone Loss by Inhibiting Osteoclastogenesis

نویسندگان

  • Ke Ke
  • Ali Muhammad Safder
  • Ok-Joo Sul
  • Jae-Hee Suh
  • Yeonsoo Joe
  • Hun-Taeg Chung
  • Hye-Seon Choi
چکیده

BACKGROUND Cilostazol has been reported to alleviate the metabolic syndrome induced by increased intracellular adenosine 3',5'-cyclic monophosphate (cAMP) levels, which is also associated with osteoclast (OC) differentiation. We hypothesized that bone loss might be attenuated via an action on OC by cilostazol. METHODOLOGY AND PRINCIPAL FINDINGS To test this idea, we investigated the effect of cilostazol on ovariectomy (OVX)-induced bone loss in mice and on OC differentiation in vitro, using μCT and tartrate-resistant acid phosphatase staining, respectively. Cilostazol prevented from OVX-induced bone loss and decreased oxidative stress in vivo. It also decreased the number and activity of OC in vitro. The effect of cilostazol on reactive oxygen species (ROS) occurred via protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factor 1, two major effectors of cAMP. Knockdown of NADPH oxidase using siRNA of p47phox attenuated the inhibitory effect of cilostazol on OC formation, suggesting that decreased OC formation by cilostazol was partly due to impaired ROS generation. Cilostazol enhanced phosphorylation of nuclear factor of activated T cells, cytoplasmic 1 (NFAT2) at PKA phosphorylation sites, preventing its nuclear translocation to result in reduced receptor activator of nuclear factor-κB ligand-induced NFAT2 expression and decreased binding of nuclear factor-κB-DNA, finally leading to reduced levels of two transcription factors required for OC differentiation. CONCLUSIONS/SIGNIFICANCE Our data highlight the therapeutic potential of cilostazol for attenuating bone loss and oxidative stress caused by loss of ovarian function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iguratimod prevents ovariectomy-induced bone loss and suppresses osteoclastogenesis via inhibition of peroxisome proliferator-activated receptor-γ

Iguratimod is known for its anti‑inflammatory activities and therapeutic effects in patients with rheumatoid arthritis. It has previously been demonstrated that iguratimod attenuates bone destruction and osteoclast formation in the Walker 256 rat mammary gland carcinoma cell‑induced bone cancer pain model. Therefore, it was hypothesized that iguratimod may additionally exhibit therapeutic effec...

متن کامل

Hwangryun-Haedok-Tang Fermented with Lactobacillus casei Suppresses Ovariectomy-Induced Bone Loss

Hwangryun-haedok-tang (HRT) is the common recipe in traditional Asian medicine, and microbial fermentation is used for the conventional methods for processing traditional medicine. We investigated the inhibitory effect of the n-butanol fraction of HRT (HRT-BU) and fHRT (fHRT-BU) on the RANKL-induced osteoclastogenesis in bone-marrow-derived macrophages. mRNA expression of osteoclastogenesis-rel...

متن کامل

Ethanol Extracts of Fresh Davallia formosana (WL1101) Inhibit Osteoclast Differentiation by Suppressing RANKL-Induced Nuclear Factor-κB Activation

The rhizome of Davallia formosana is commonly used to treat bone disease including bone fracture, arthritis, and osteoporosis in Chinese herbal medicine. Here, we report the effects of WL1101, the ethanol extracts of fresh rhizomes of Davallia formosana on ovariectomy-induced osteoporosis. In addition, excess activated bone-resorbing osteoclasts play crucial roles in inflammation-induced bone l...

متن کامل

Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss

Osteoclastogenesis is an essential process during bone metabolism which can also be promoted by inflammatory signals. Thrombomodulin (TM), a transmembrane glycoprotein, exerts anti-inflammatory activities such as neutralization of proinflammatory high-mobility group box 1 (HMGB1) through TM lectin-like domain. This study aimed to identify the role of myeloid TM (i.e., endogenous TM expression o...

متن کامل

Differential Roles of MAPK Kinases MKK3 and MKK6 in Osteoclastogenesis and Bone Loss

Bone mass is maintained by osteoclasts that resorb bone and osteoblasts that promote matrix deposition and mineralization. Bone homeostasis is altered in chronic inflammation as well as in post-menopausal loss of estrogen, which favors osteoclast activity that leads to osteoporosis. The MAPK p38α is a key regulator of bone loss and p38 inhibitors preserve bone mass by inhibiting osteoclastogene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015