On the mean-square performance of the constrained LMS algorithm

نویسندگان

  • Reza Arablouei
  • Kutluyil Dogançay
  • Stefan Werner
چکیده

—The so-called constrained least mean-square algorithm is one of the most commonly used linear-equality-constrained adaptive filtering algorithms. Its main advantages are adaptability and relative simplicity. In order to gain analytical insights into the performance of this algorithm, we examine its mean-square performance and derive theoretical expressions for its transient and steady-state mean-square deviation. Our methodology is inspired by the principle of energy conservation in adaptive filters. Simulation results corroborate the accuracy of the derived formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...

متن کامل

The Wavelet Transform-Domain LMS Adaptive Filter Algorithm with Variable Step-Size

The wavelet transform-domain least-mean square (WTDLMS) algorithm uses the self-orthogonalizing technique to improve the convergence performance of LMS. In WTDLMS algorithm, the trade-off between the steady-state error and the convergence rate is obtained by the fixed step-size. In this paper, the WTDLMS adaptive algorithm with variable step-size (VSS) is established. The step-size in each subf...

متن کامل

Optimization Capabilities of LMS and SMI Algorithm for Smart Antenna Systems (RESEARCH NOTE)

In the present paper convergence characteristics of Sample matrix Inversion (SMI) and Least Mean Square (LMS) adaptive beam-forming algorithms (ABFA) are compared for a Smart Antenna System (SAS) in a multipath environment. SAS are employed at base stations for radiating narrow beams at the desired mobile users. The ABFA are incorporated in the digital signal processors for adjusting the weight...

متن کامل

Mean-Square Performance of the Constrained LMS Algorithm

—The so-called constrained least mean-square algorithm is one of the most commonly used linear-equality-constrained adaptive filtering algorithms. Its main advantages are adaptability and relative simplicity. In order to gain theoretical insights into the performance of this algorithm, we examine its mean-square convergence and derive an expression for its steady-state mean-square deviation. Ou...

متن کامل

Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...

متن کامل

Frequency Estimation of Unbalanced Three-Phase Power System using a New LMS Algorithm

This paper presents a simple and easy implementable Least Mean Square (LMS) type approach for frequency estimation of three phase power system in an unbalanced condition. The proposed LMS type algorithm is based on a second order recursion for the complex voltage derived from Clarke's transformation which is proved in the paper. The proposed algorithm is real adaptive filter with real parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2015