Potential of thin stillage as a low-cost nutrient source for direct cellulose fermentation by Clostridium thermocellum
نویسندگان
چکیده
Utilization of thin stillage (TS), derived from grain-based ethanol production, was investigated as an alternative source for microbial growth nutrients during direct conversion of cellulose by Clostridium thermocellum DSM 1237. Fermentation end-products synthesized by C. thermocellum grown on media prepared with various concentrations (50–400 g/L) of TS were compared to those synthesized by C. thermocellum grown on reagent grade chemical (reference) medium. Cell-growth in TS media, monitored with the aid of quantitative polymerase chain reactions (qPCR) technique, showed prolonged growth with increasing TS concentration. Final fermentation end-product concentrations from TS media were comparable with those from the reference medium despite lower growth-rates. The volumetric H2 production generated by C. thermocellum grown with medium containing a low concentration (50 g/L) of TS matched the volumetric H2 production by C. thermocellum grown in the reference medium, while higher concentrations (200 g/L) of TS resulted in greater synthesis of ethanol. Supplementation of TS-media with Mg enhanced ethanol production, while hydrogen production remained unchanged. These results suggest that TS, an attractive source of low-cost nutrients, is capable of supporting the growth of C. thermocellum and that high concentrations of TS favor synthesis of ethanol over hydrogen from cellulose.
منابع مشابه
Optimization of Influential Nutrients during Direct Cellulose Fermentation into Hydrogen by Clostridium thermocellum
Combinatorial effects of influential growth nutrients were investigated in order to enhance hydrogen (H2) production during direct conversion of cellulose by Clostridium thermocellum DSM 1237. A central composite face-centered design and response surface methodology (RSM) were applied to optimize concentrations of cellulose, yeast extract (YE), and magnesium chloride (Mg) in culture. The overal...
متن کاملBiotechnological Production of Cellulose by Gluconacetobacter Xylinus from Agricultural Waste
The purpose of this study was to utilize low quality date syrup, a rich and available source of nutrient in Iran, for the production of bacterial cellulose using Gluconacetobacter xylinus. Static batch fermentationfor the purpose of cellulose production by G. xylinus (PTCC, 1734) was studied using low quality date syrupand sucrose solution (Bx. 10%) as fermentation media at 28°C. Re...
متن کاملCellulose fermentation by Clostridium thermocellum and a mixed consortium in an automated repetitive batch reactor.
An automated repetitive batch fermentation system was developed to facilitate the study of microbial cellulose utilization. The system was operated with Avicel as the carbon source and either Clostridium thermocellum ATCC 27405 or a consortium enriched from compost as inocula. Multiple cycles of growth medium addition, incubation, and medium removal were performed with each inoculum. Removal an...
متن کاملHomoacetogenic Fermentation of Cellulose by a Coculture of Clostridium thermocellum and Acetogenium kivui.
Interrelationships between methanogens and fermentative or hydrolytic bacteria are well documented; however, such cocultures do not allow a complete fermentation shift to a peculiar metabolite. We describe here a new stable association between Clostridium thermocellum and Acetogenium kivui which converts 1 mol of cellulose (anhydroglucose equivalent) into 2.7 mol of acetate.
متن کاملEfficient whole-cell-catalyzing cellulose saccharification using engineered Clostridium thermocellum
BACKGROUND Cost-efficient saccharification is one of the main bottlenecks for industrial lignocellulose conversion. Clostridium thermocellum naturally degrades lignocellulose efficiently using the cellulosome, a multiprotein supermolecular complex, and thus can be potentially used as a low-cost catalyst for lignocellulose saccharification. The industrial use of C. thermocellum is restrained due...
متن کامل