Group-enhanced ranking

نویسندگان

  • Yuan Lin
  • Hongfei Lin
  • Kan Xu
  • Ajith Abraham
  • Hongbo Liu
چکیده

An essential issue in document retrieval is ranking, which is used to rank documents by their relevancies to a given query. This paper presents a novel machine learning framework for ranking based on document groups. Multiple level labels represent the relevance of documents. The values of labels are used to quantify the relevance of the documents. According to a given query in the training set, the documents are divided into several groups based upon their relevance labels. The group with higher relevance labels is always ranked upon the ones with lower relevance labels. Further a preference strategy is introduced in the loss functions, which are sensitive to the group with higher relevance labels to enhance the group ranking method. Experimental results illustrate that the proposed approach is very effective, with a 14 percent improvement on TD2003 data set evaluated by MAP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network

Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...

متن کامل

Hierarchical Group Compromise Ranking Methodology Based on Euclidean–Hausdorff Distance Measure Under Uncertainty: An Application to Facility Location Selection Problem

Proposing a hierarchical group compromise method can be regarded as a one of major multi-attributes decision-making tool that can be introduced to rank the possible alternatives among conflict criteria. Decision makers’ (DMs’) judgments are considered as imprecise or fuzzy in complex and hesitant situations. In the group decision making, an aggregation of DMs’ judgments and fuzzy group compromi...

متن کامل

The New Method for Ranking Grouped Credit Customer Based on DEA Method

Data Envelopment Analysis (DEA) is a widely used non-parametric method for ranking by Decision-Making Units (DMU). Despite the fact that DEA method does not require numerous preconditions, the necessity of the DMUs to be homogeneous is one of the most important rules in applying this technique. Moreover, in real world problems, due to the nature of DMUs, the need for ranking the grouped data ha...

متن کامل

Auditory-Visual Lexical Tone Perception in Thai Elderly Listeners with and without Hearing Impairment

Lexical tone perception was investigated in elderly Thais with Normal Hearing (NH), or Hearing Impairment (HI), the latter with and without Hearing Aids. Auditory-visual (AV), auditory-only (AO), and visual-only (VO) discrimination of Thai tones was investigated. Both groups performed poorly in VO. In AV and AO, the NH performed better than the HI group, and Hearing Aids facilitated tone discri...

متن کامل

Vendor Selection: An Enhanced Hybrid Fuzzy MCDM Model

The objective of this article is to develop an empirically based framework for formulating and selecting a vendor in supply chain. This study applies the fuzzy set theory to evaluate the vendor selection decision. Applying Analytic Hierarchy Process (AHP) in obtaining criteria weights and applied Technique for Order Performance by Similarity to Idea Solution (TOPSIS) for obtaining final ranking...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2015