Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity.
نویسندگان
چکیده
Cytochrome P450 (CYP) 2E1 was the most efficient CYP enzyme that oxidized benzene to soluble and covalently bound metabolites in rat and human liver microsomes. The covalent binding was due mostly to the formation of benzoquinone (BQ), the oxidation product of hydroquinone (HQ), and was inversely related to the formation of soluble metabolites. In rats, inhalation of benzene (4 mg/liter of air) caused a rapid destruction of CYP2B1 previously induced by phenobarbital. The ability of benzene metabolites to destroy liver microsomal CYP in vitro decreased in the order BQ > HQ > catechol > phenol. The destruction was reversed by ascorbate and diminished by alpha-tocopherol, suggesting that HQ was not toxic, whereas BQ and semiquinone radical (SQ) caused the effect. In the presence of nicotinamide adenine dinucleotide phosphate, reduced (NADPH) the microsomes did not oxidize HQ to BQ, while the formation of superoxide anion radical from both HQ and BQ was markedly quenched. Destruction of CYP in vitro caused by HQ or BQ was not mediated by hydroxyl radical formation or by lipid peroxidation. On the contrary, HQ and BQ inhibited NADPH-mediated lipid peroxidation. Ascorbate induced high levels of hydroxyl radical formation and lipid peroxidation, which were differentially affected by quinones, indicating different mechanisms. Despite reducing the toxicity of HQ and BQ, ascorbate appeared to induce its own toxicity, reflected in high levels of lipid peroxidation. Iron redox cycling played a significant role in the NADPH-induced hydroxyl radical formation but not in that caused by ascorbate; however, lipid peroxidation induced by NADPH or ascorbate was suppressed by ethylenediaminetraacetate, indicating a crucial role of iron. Thus, the data indicate that the quinones destroyed CYP directly and not via oxygen activation or lipid peroxidation.
منابع مشابه
Metabolism related toxicity of diclofenac in yeast as model system.
Diclofenac is a widely used drug that can cause serious hepatotoxicity, which has been linked to metabolism by cytochrome P450s (P450). To investigate the role of oxidative metabolites in diclofenac toxicity, a model for P450-related toxicity was set up in Saccharomyces cerevisiae. We expressed a drug-metabolizing mutant of cytochrome P450 BM3 (BM3 M11) in yeast. Importantly, BM3 M11 yielded si...
متن کاملReactive ring-opened aldehyde metabolites in benzene hematotoxicity.
The hematotoxicity of benzene is mediated by reactive benzene metabolites and possibly by other intermediates including reactive oxygen species. We previously hypothesized that ring-opened metabolites may significantly contribute to benzene hematotoxicity. Consistent with this hypothesis, our studies initially demonstrated that benzene is metabolized in vitro to trans-trans-muconaldehyde (MUC),...
متن کاملDifferential involvement of mitochondrial dysfunction, cytochrome P450 activity, and active transport in the toxicity of structurally related NSAIDs.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of pain and inflammation. However, this group of drugs is associated with serious adverse drug reactions. Previously, we studied the mechanisms underlying toxicity of the NSAID diclofenac using Saccharomycescerevisiae as model system. We identified the involvement of several mitochondrial proteins, a transporter and...
متن کاملBenzene induces cytotoxicity without metabolic activation.
OBJECTIVES Benzene has been consistently associated with hematological disorders, including acute myeloid leukemia and aplastic anemia, but the mechanisms causing these disorders are still unclear. Various metabolites of benzene lead to toxicity through the production of reactive oxygen species (ROS), the inhibition of topoisomerase and DNA damage. However, benzene itself is considered to have ...
متن کاملCritical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.
Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, alth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 104 شماره
صفحات -
تاریخ انتشار 1996