Decidability and Expressiveness of Finitely Representable Recognizable Graph Languages
نویسندگان
چکیده
Recognizable graph languages are a generalization of regular (word) languages to graphs (as well as arbitrary categories). Recently automaton functors were proposed as acceptors of recognizable graph languages. They promise to be a useful tool for the verification of dynamic systems, for example for invariant checking. Since automaton functors may contain an infinite number of finite state sets, one must restrict to finitely representable ones for implementation reasons. In this paper we take into account two such finite representations: primitive recursive automaton functors – in which the automaton functor can be constructed on-the-fly by a primitive recursive function –, and bounded automaton functors – in which the interface size of the graphs (cf. path width) is bounded, so that the automaton functor can be explicitly represented. We show that the language classes of both kinds of automaton functor are closed under boolean operations, and compare the expressiveness of the two paradigms with hyperedge replacement grammars. In addition we show that the emptiness and equivalence problem are decidable for bounded automaton functors, but undecidable for primitive recursive automaton functors.
منابع مشابه
Finitely Representable Databasesy
We study infinite but finitely representable databases based on constraints, motivated by new database applications such as those involving spatio-temporal information. We introduce a general definition of finite representation, and define the concept of a query as a generalization of a query over relational databases. We investigate the theory of finitely representable models and prove that it...
متن کامل15 Prefix-Recognizable Graphs and Monadic Logic
In 1969, Rabin [148] showed that the monadic second-order theory (MSO-theory) of infinite binary trees is decidable (see Chapter 12 of this volume or [183]). Ever since, it has been an interesting goal to extend this result to other classes of objects. Muller and Schupp [135] showed that the class of pushdown graphs has a decidable MSO-theory. This class is obtained by considering the configura...
متن کاملThe Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs
This paper begins an investigation of the monadic second-order logic of graphs and of sets of graphs, using techniques from universal algebra, and the theory of formal languages. (By a graph, we mean a finite directed hyperedge-labelled hypergraph, equipped with a sequence of distinguished vertices.) A survey of this research can be found in Courcelle [ 111. An algebraic structure on the set of...
متن کاملLanguage Theory and Infinite Graphs
Automata and language theory study finitely presented mechanisms for generating languages. A language is a family of words. A slight shift in focus is very revealing. Instead of grammars and automata as language generators, one views them as propagators of possibly infinite labelled transition graphs. This is our starting point for pushdown automata. The main goal is to report on a proof of dec...
متن کاملFinitely Generated Annihilating-Ideal Graph of Commutative Rings
Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ECEASST
دوره 41 شماره
صفحات -
تاریخ انتشار 2011