Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation
نویسندگان
چکیده
We apply multivariate Lagrange interpolation to synthesizing polynomial quantitative loop invariants for probabilistic programs. We reduce the computation of an quantitative loop invariant to solving constraints over program variables and unknown coefficients. Lagrange interpolation allows us to find constraints with less unknown coefficients. Counterexample-guided refinement furthermore generates linear constraints that pinpoint the desired quantitative invariants. We evaluate our technique by several case studies with polynomial quantitative loop invariants in the experiments.
منابع مشابه
Finding Polynomial Loop Invariants for Probabilistic Programs
Quantitative loop invariants are an essential element in the verification of probabilistic programs. Recently, multivariate Lagrange interpolation has been applied to synthesizing polynomial invariants. In this paper, we propose an alternative approach. First, we fix a polynomial template as a candidate of a loop invariant. Using Stengle’s Positivstellensatz and a transformation to a sum-of-squ...
متن کاملOn the Approximation Order and Numerical Stability of Local Lagrange Interpolation by Polyharmonic Splines
This paper proves convergence rates for local scattered data interpolation by polyharmonic splines. To this end, it is shown that the Lagrange basis functions of polyharmonic spline interpolation are invariant under uniform scalings. Consequences of this important result for the numerical stability of the local interpolation scheme are discussed. A stable algorithm for the evaluation of polyhar...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملMEAN VALUE INTERPOLATION ON SPHERES
In this paper we consider multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have concentric spheres. Indeed, we consider the problem in three variables when it is not correct.
متن کاملPredicate Generation for Learning-Based Quantifier-Free Loop Invariant Inference
We address the predicate generation problem in the context of loop invariant inference. Motivated by the interpolation-based abstraction refinement technique, we apply the interpolation theorem to synthesize predicates implicitly implied by program texts. Our technique is able to improve the effectiveness and efficiency of the learning-based loop invariant inference algorithm in [14]. Experimen...
متن کامل