Pii: S0306-4522(99)00271-7
نویسنده
چکیده
Amphetamine-like stimulants exert well-known arousal-enhancing actions. Surprisingly, little is known concerning the neuroanatomical substrates through which these drugs enhance arousal. Previous work implicates a number of basal forebrain structures in the regulation of behavioral state. The current studies examined the effects of amphetamine infusions made directly within basal forebrain sites on behavioral, electroencephalographic, and electromyographic indices of arousal in anesthetized and unanesthetized rat. In the anesthetized rat, amphetamine elicited prolonged epochs of bilateral electroencephalographic activation when infused unilaterally (3.75 mg/150 nl) into an extended region of the medial basal forebrain, demarcated anteriorally by the anterior portion of the medial septal area (which includes posterior accumbens shell) and posteriorally by the posterior aspect of the preoptic area of the hypothalamus. In the unanesthetized (undisturbed, resting) rat, amphetamine infusions into this region elicited prolonged epochs of alert waking, which at the lowest dose (3.75 mg), qualitatively resembled normal waking. Infusions placed lateral (including within the substantia innominata), anterior (including within the core subregion of the nucleus accumbens), posterior, or dorsal to these structures, as well as directly within the lateral ventricles did not alter electroencephalographic or behavioral measures. These results indicate that a region of the medial basal forebrain, extending from the anterior medial septum/accumbens shell to the posterior preoptic area, is a site within which amphetamine-like stimulants act to enhance behavioral and electroencephalographic measures of arousal. q 1999 IBRO. Published by Elsevier Science Ltd.
منابع مشابه
Pii: S0306-4522(99)00292-4
An essential role for caspases in programmed neuronal cell death has been demonstrated in various in vitro studies, and synthetic caspase inhibitors have recently been shown to prevent neuronal cell loss in animal models of focal cerebral ischemia and traumatic brain injury, respectively. The therapeutic utility of caspase inhibitors, however, will depend on preservation of both structural and ...
متن کاملPii: S0306-4522(99)00150-5
The amplitude of excitatory postsynaptic potentials and currents increases with membrane potential hyperpolarization. This has been attributed to an increase in the driving force when the membrane potential deviates from the equilibrium potential of the respective ions.17 Here we report that in a subset of neocortical and hippocampal synapses, postsynaptic hyperpolarization affects traditional ...
متن کاملPii: S0306-4522(99)00381-4
Glutamate is the principal excitatory neurotransmitter in the mammalian brain. Several lines of evidence suggest that glutamatergic hypoactivity exists in the Alzheimer’s disease brain, where it may contribute to both brain amyloid burden and cognitive dysfunction. Although metabotropic glutamate receptors have been shown to alter cleavage of the amyloid precursor protein, little attention has ...
متن کاملPii: S0306-4522(99)00296-1
Transgenic mice overexpressing brain-derived neurotrophic factor from the b-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic fa...
متن کاملPii: S0306-4522(99)00273-0
The role of carnosine, N-acetylcarnosine and homocarnosine as scavengers of reactive oxygen species and protectors against neuronal cell death secondary to excitotoxic concentrations of kainate and N-methyl-d-aspartate was studied using acutely dissociated cerebellar granule cell neurons and flow cytometry. We find that carnosine, N-acetylcarnosine and homocarnosine at physiological concentrati...
متن کامل