Roles for APIS and the 20S proteasome in adenovirus E1A-dependent transcription.
نویسندگان
چکیده
We have determined distinct roles for different proteasome complexes in adenovirus (Ad) E1A-dependent transcription. We show that the 19S ATPase, S8, as a component of 19S ATPase proteins independent of 20S (APIS), binds specifically to the E1A transactivation domain, conserved region 3 (CR3). Recruitment of APIS to CR3 enhances the ability of E1A to stimulate transcription from viral early gene promoters during Ad infection of human cells. The ability of CR3 to stimulate transcription in yeast is similarly dependent on the functional integrity of yeast APIS components, Sug1 and Sug2. The 20S proteasome is also recruited to CR3 independently of APIS and the 26S proteasome. Chromatin immunoprecipitation reveals that E1A, S8 and the 20S proteasome are recruited to both Ad early region gene promoters and early region gene sequences during Ad infection, suggesting their requirement in both transcriptional initiation and elongation. We also demonstrate that E1A CR3 transactivation and degradation sequences functionally overlap and that proteasome inhibitors repress E1A transcription. Taken together, these data demonstrate distinct roles for APIS and the 20S proteasome in E1A-dependent transactivation.
منابع مشابه
Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome.
Nuclear bodies represent a heterogeneous class of nuclear structures. Herein, we describe that a subset of nuclear bodies is highly enriched in components of the ubiquitin-proteasome pathway of proteolysis. We coined the term clastosome (from the Greek klastos, broken and soma, body) to refer to this type of nuclear body. Clastosomes contain a high concentration of 1) ubiquitin conjugates, 2) t...
متن کاملAdenovirus E1A downregulates cJun- and JunB-mediated transcription by targeting their coactivator p300.
Transcription factors and cofactors play critical roles in cell growth and differentiation. Alterations of their activities either through genetic mutations or by viral oncoproteins often result in aberrant cell growth and tumorigenesis. The transcriptional cofactor p300 has recently been shown to be complexed with transcription factors YY1 and CREB. Adenovirus E1A oncoproteins target these tra...
متن کاملAdenovirus E1A recruits the human Paf1 complex to enhance transcriptional elongation.
UNLABELLED During infection by human adenovirus (HAdV), the proteins encoded by the early region 1A (E1A) gene bind and appropriate components of the cellular transcriptional machinery to activate the transcription of viral early genes. Previously, we identified roles for the human Bre1 (hBre1) and hPaf1 complexes in E1A-mediated transcriptional activation of HAdV early genes. Here we show that...
متن کاملExamination of the Unconventional Role of the 19S Proteasome Subcomplex in RNA Polymerase II Transcription in Saccharomyces cerevisiae
Conventionally, damaged and ubiquitinated proteins are subjected to degradation in the 26S proteasome in eukaryotes. However, several observations have indicated that the 19S subcomplex of the 26S proteasome may play a non-proteolytic role in RNA polymerase II (Pol II) transcription 1 : (1) Ubiquitination was thought to be required for activity of a viral transcription activator, VP16. (2) The ...
متن کاملThe CtBP binding domain in the adenovirus E1A protein controls CR1- dependent transactivation
The adenovirus E1A-243R protein has the ability to force a resting cell into uncontrolled proliferation by modulating the activity of key targets in cell cycle control. Most of these regulatory mechanisms are dependent on activities mapping to conserved region 1 (CR1) and the non-conserved N-terminal region of E1A. We have previously shown that CR1 functions as a very patent transactivator when...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2006