Comparison of group-level, source localized activity for simultaneous functional near-infrared spectroscopy-magnetoencephalography and simultaneous fNIRS-fMRI during parametric median nerve stimulation.
نویسندگان
چکیده
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique, which uses light to measure changes in cerebral blood oxygenation through sensors placed on the surface of the scalp. We recorded concurrent fNIRS with magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) in order to investigate the group-level correspondence of these measures with source-localized fNIRS estimates. Healthy participants took part in both a concurrent fNIRS-MEG and fNIRS-fMRI neuroimaging session during two somatosensory stimulation tasks, a blocked design median nerve localizer and parametric pulsed-pair median nerve stimulation using interpulse intervals from 100 to 500 ms. We found the spatial correlation for estimated activation patterns from the somatosensory task was [Formula: see text], 0.57, and [Formula: see text] and the amplitude correlation was [Formula: see text], 0.52, and [Formula: see text] for fMRI-MEG, fMRI-fNIRS oxy-hemoglobin, and fMRI-fNIRS deoxy-hemoglobin signals, respectively. Taken together, these results show good correspondence among the fMRI, fNIRS, and MEG with the great majority of the difference across modalities being driven by lower sensitivity for deeper brain sources in MEG and fNIRS. These results provide an important validation of source-localized fNIRS in the context of concurrent multimodal imaging for future studies of the relationship between physiological effects in the human brain.
منابع مشابه
Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study.
Measuring the hemodynamic response with functional magnetic resonance imaging (fMRI) together with functional near-infrared spectroscopy (fNIRS) may overcome limitations of single-method approaches. Accordingly, we measured the event-related hemodynamic response with both imaging methods simultaneously in young subjects during visual stimulation. An intertrial interval of 60 s was chosen to inc...
متن کاملHemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings
OBJECTIVE We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. METHODS The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algori...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملConcurrent application of TMS and near-infrared optical imaging: methodological considerations and potential artifacts
The simultaneous application of transcranial magnetic stimulation (TMS) with non-invasive neuroimaging provides a powerful method for investigating functional connectivity in the human brain and the causal relationships between areas in distributed brain networks. TMS has been combined with numerous neuroimaging techniques including, electroencephalography (EEG), functional magnetic resonance i...
متن کاملStatistical analysis of fNIRS data: A comprehensive review
Functional near-infrared spectroscopy (fNIRS) is a non-invasive method to measure brain activities using the changes of optical absorption in the brain through the intact skull. fNIRS has many advantages over other neuroimaging modalities such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), or magnetoencephalography (MEG), since it can directly measure blood...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurophotonics
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2017