A bundle filter method for nonsmooth nonlinear optimization
نویسنده
چکیده
We consider minimizing a nonsmooth objective subject to nonsmooth constraints. The nonsmooth functions are approximated by a bundle of subgradients. The novel idea of a filter is used to promote global convergence.
منابع مشابه
A feasible second order bundle algorithm for nonsmooth, nonconvex optimization problems with inequality constraints: I. Derivation and convergence
This paper extends the SQP-approach of the well-known bundle-Newton method for nonsmooth unconstrained minimization to the nonlinearly constrained case. Instead of using a penalty function or a filter or an improvement function to deal with the presence of constraints, the search direction is determined by solving a convex quadratically constrained quadratic program to obtain good iteration poi...
متن کاملA bundle-filter method for nonsmooth convex constrained optimization
For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression a...
متن کاملAn Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization without a Penalty Function or a Filter
Global convergence in constrained optimization algorithms has traditionally been enforced by the use of parametrized penalty functions. Recently, the filter strategy has been introduced as an alternative. At least part of the motivation for filter methods consists in avoiding the need for estimating a suitable penalty parameter, which is often a delicate task. In this paper, we demonstrate that...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993