Cooperative Light‐Activated Iodine and Photoredox Catalysis for the Amination of Csp3 −H Bonds

نویسندگان

  • Peter Becker
  • Thomas Duhamel
  • Christopher J Stein
  • Markus Reiher
  • Kilian Muñiz
چکیده

An unprecedented method that makes use of the cooperative interplay between molecular iodine and photoredox catalysis has been developed for dual light-activated intramolecular benzylic C-H amination. Iodine serves as the catalyst for the formation of a new C-N bond by activating a remote Csp3 -H bond (1,5-HAT process) under visible-light irradiation while the organic photoredox catalyst TPT effects the reoxidation of the molecular iodine catalyst. To explain the compatibility of the two involved photochemical steps, the key N-I bond activation was elucidated by computational methods. The new cooperative catalysis has important implications for the combination of non-metallic main-group catalysis with photocatalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct alkylation of heteroarenes with unactivated bromoalkanes using photoredox gold catalysis

Although visible light photoredox catalysis has emerged as a powerful tool for the construction of C–C bonds, common catalysts and/or their photoexcited states suffer from low redox potentials, limiting their applicability to alkyl radical generation from substrates with activated carbon–halogen bonds. Radicals derived from these activated compounds, being highly electrophilic or stabilized, do...

متن کامل

A unified photoredox-catalysis strategy for C(sp3)–H hydroxylation and amidation using hypervalent iodine† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02773g Click here for additional data file.

We report a unified photoredox-catalysis strategy for both hydroxylation and amidation of tertiary and benzylic C–H bonds. Use of hydroxyl perfluorobenziodoxole (PFBl–OH) oxidant is critical for efficient tertiary C–H functionalization, likely due to the enhanced electrophilicity of the benziodoxole radical. Benzylic methylene C–H bonds can be hydroxylated or amidated using unmodified hydroxyl ...

متن کامل

1,4-Dihydropyridines as Alkyl Radical Precursors: Introducing the Aldehyde Feedstock to Nickel/Photoredox Dual Catalysis

A Ni/photoredox dual catalytic cross-coupling is disclosed in which a diverse range of (hetero)aryl bromides are used as electrophiles, with 1,4-dihydropyridines serving as precursors to Csp3-centered alkyl radical coupling partners. The reported method is characterized by its extremely mild reaction conditions, enabling access to underexplored cores.

متن کامل

Photoredox Catalysis in Organic Chemistry

In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In ...

متن کامل

Intermolecular Aryl C−H Amination through Sequential Iron and Copper Catalysis

A mild, efficient and regioselective method for para-amination of activated arenes has been developed through a combination of iron and copper catalysis. A diverse range of products were obtained from an operationally simple one-pot, two-step procedure involving bromination of the aryl substrate with the powerful Lewis acid iron(III) triflimide, followed by a copper(I)-catalysed N-arylation rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2017