Distribution of atmospheric methane oxidation and methanotrophic communities on hawaiian volcanic deposits and soils.
نویسندگان
چکیده
Hawaiian volcanic deposits offer ideal opportunities to assess methanotrophic bacterial colonization of new substrates, and to determine the relative significance of methanotrophy during ecosystem succession. Activity and molecular ecological surveys indicated that significant methanotrophic activity was restricted to vegetated ecosystems characterized by closed-canopy forests and significant soil accumulation. In these systems, atmospheric methane oxidation rates (0.7-1.8 mg CH(4) m(-2) d(-1)) were comparable to the lower end of values reported for continental soils. No trends in activity related to deposit age or type were evident at ambient or elevated methane levels. Analyses of clone libraries based on particulate methane monooxygenase and ammonia monooxygenase (pmoA/amoA) genes revealed largely novel sequences, with distinct assemblages for each of two sites. Remarkably, sequences from a 300-yr old forest soil were most closely related to sequences from Arctic soils. Collectively, the evidence indicates that methanotrophs colonize volcanic substrates slowly and likely depend on interactions with plant and other microbial communities.
منابع مشابه
Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils.
Two methanotrophic bacteria, Methylobacter albus BG8 and Methylosinus trichosporium OB3b, oxidized atmospheric methane during batch growth on methanol. Methane consumption was rapidly and substantially diminished (95% over 9 days) when washed cell suspensions were incubated without methanol in the presence of atmospheric methane (1.7 ppm). Methanotrophic activity was stimulated after methanol (...
متن کاملDifferent atmospheric methane-oxidizing communities in European beech and Norway spruce soils.
Norway spruce (Picea abies) forests exhibit lower annual atmospheric methane consumption rates than do European beech (Fagus sylvatica) forests. In the current study, pmoA (encoding a subunit of membrane-bound CH(4) monooxygenase) genes from three temperate forest ecosystems with both beech and spruce stands were analyzed to assess the potential effect of tree species on methanotrophic communit...
متن کاملAerobic Methanotrophs in Natural and Agricultural Soils of European Russia
Human activities such as land management and global warming have great impact on the environment. Among changes associated with the global warming, rising methane emission is a serious concern. Therefore, we assessed methane oxidation activity and diversity of aerobic methanotrophic bacteria in eight soil types (both unmanaged and agricultural) distributed across the European part of Russia. Us...
متن کاملMolecular characterization of methanotrophic communities in forest soils that consume atmospheric methane.
Methanotroph abundance was analyzed in control and long-term nitrogen-amended pine and hardwood soils using rRNA-targeted quantitative hybridization. Family-specific 16S rRNA and pmoA/amoA genes were analyzed via PCR-directed assays to elucidate methanotrophic bacteria inhabiting soils undergoing atmospheric methane consumption. Quantitative hybridizations suggested methanotrophs related to the...
متن کاملRadioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils.
Microorganisms that oxidize atmospheric methane in soils were characterized by radioactive labelling with (14)CH(4) followed by analysis of radiolabelled phospholipid ester-linked fatty acids ((14)C-PLFAs). The radioactive fingerprinting technique was used to compare active methanotrophs in soil samples from Greenland, Denmark, the United States, and Brazil. The (14)C-PLFA fingerprints indicate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbes and environments
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2008