Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons.

نویسندگان

  • Joshua A Goldberg
  • Mark A Teagarden
  • Robert C Foehring
  • Charles J Wilson
چکیده

Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calcium imaging we show that the calcium transients underlying these currents exhibit two corresponding timescales throughout the somatodendritic tree. This result is not consistent with spatial compartmentalization of calcium entering through the two calcium channels and acting on the two potassium currents, or with differences in channel gating kinetics of the calcium dependent potassium currents. Instead, we show that nonequilibrium dynamics of calcium redistribution among cytoplasmic binding sites with different calcium binding kinetics can give rise to multiple timescales within the same cytoplasmic volume. The resulting independence of mAHP and sAHP currents allows cytoplasmic calcium to control two different and incompatible firing patterns (single spiking or bursting and pausing), depending on whether calcium influx is pulsatile or sustained. During irregular firing, calcium entry at both timescales can be detected, suggesting that an interaction between the medium and slow calcium-dependent afterhyperpolarizations may underlie this firing pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex autonomous firing patterns of striatal low-threshold spike interneurons.

During sensorimotor learning, tonically active neurons (TANs) in the striatum acquire bursts and pauses in their firing based on the salience of the stimulus. Striatal cholinergic interneurons display tonic intrinsic firing, even in the absence of synaptic input, that resembles TAN activity seen in vivo. However, whether there are other striatal neurons among the group identified as TANs is unk...

متن کامل

Complex autonomous firing patterns of striatal low - threshold 1 spike interneurons

19 During sensorimotor learning, tonically active neurons (TANs) in the striatum acquire bursts 20 and pauses in their firing based on the salience of the stimulus. Striatal cholinergic interneurons 21 display tonic intrinsic firing, even in the absence of synaptic input, that resembles TAN activity 22 seen in vivo. But whether there are other striatal neurons among the group identified as TANs...

متن کامل

Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons.

Striatal cholinergic interneurons recorded in slices exhibit three different firing patterns: rhythmic single spiking, irregular bursting, and rhythmic bursting. The rhythmic single-spiking pattern is governed mainly by a prominent brief afterhyperpolarization (mAHP) that follows single spikes. The mAHP arises from an apamin-sensitive calcium-dependent potassium current. A slower AHP (sAHP), al...

متن کامل

Recurrent inhibitory network among striatal cholinergic interneurons.

The striatum plays a central role in sensorimotor learning and action selection. Tonically active cholinergic interneurons in the striatum give rise to dense axonal arborizations and significantly shape striatal output. However, it is not clear how the activity of these neurons is regulated within the striatal microcircuitry. In this study, using rat brain slices, we find that stimulation of in...

متن کامل

Coordinate high-frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons.

Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium concentration ([Ca2+]i), and the induction of sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 26  شماره 

صفحات  -

تاریخ انتشار 2009