Hierarchical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge.
نویسندگان
چکیده
Effects of nanoscale confinement and partial charges that stem from quantum calculations are investigated in silica slit channels filled with 1 M KCl at the point of zero charge by using a hierarchical multiscale simulation methodology. Partial charges of both bulk and surface atoms from ab initio quantum calculations that take into account bond polarization and electronegativity are used in molecular dynamics (MD) simulations to obtain ion and water concentration profiles for channel widths of 1.1, 2.1, 2.75, and 4.1 nm. The interfacial electron density profiles of simulations matched well with that of recent X-ray reflectivity experiments. By simulating corresponding channels with no partial charges, it was observed that the partial charges affect the concentration profiles and transport properties such as diffusion coefficients and mobilities up to a distance of about 3 sigma(O)(-)(O) from the surface. Both in uncharged and partially charged cases, oscillations in concentration profiles of K(+) and Cl(-) ions give rise to an electro-osmotic flow in the presence of an external electric field, indicating the presence of an electric double layer at net zero surface charge, contrary to the expectations from classical continuum theory. I-V curves in a channel-bath system using ionic mobilities from MD simulations were significantly different for channels with and without partial charges for channel widths less than 4.1 nm.
منابع مشابه
Surface-charge-governed ion transport in nanofluidic channels.
A study of ion transport in aqueous-filled silica channels as thin as 70 nm reveals a remarkable degree of conduction at low salt concentrations that departs strongly from bulk behavior: In the dilute limit, the electrical conductances of channels saturate at a value that is independent of both the salt concentration and the channel height. Our data are well described by an electrokinetic model...
متن کاملElectrokinetic transport in nanochannels. 2. Experiments.
We present an experimental study of nanoscale electrokinetic transport in custom-fabricated quartz nanochannels using quantitative epifluorescence imaging and current monitoring techniques. One aim is to yield insight into electrical double layer physics and study the applicability of continuum theory to nanoscale electrokinetic systems. A second aim is to explore a new separation modality offe...
متن کاملElectrokinetic molecular separation in nanoscale fluidic channels.
This report presents a study of electrokinetic transport in a series of integrated macro- to nano-fluidic chips that allow for controlled injection of molecular mixtures into high-density arrays of nanochannels. The high-aspect-ratio nanochannels were fabricated on a Si wafer using interferometric lithography and standard semiconductor industry processes, and are capped with a transparent Pyrex...
متن کاملOn the flexural properties of multiscale nanosilica/E-glass/epoxy anisogrid-stiffened composite panels
In the present study, multiscale nanosilica/E-glass/epoxy anisogrid composite panels were investigated for flexural properties as a function of nanosilica loading in the matrix (0, 1, 3 and 5 wt.%). The surface of the silica nanoparticles was firstly modified with 3-glycidoxypropyltrimethoxysilane (3-GPTS). The fourier transform infrared (FTIR) spectroscopy revealed that the organic functional ...
متن کاملElectrokinetic transport in nanochannels. 1. Theory.
Electrokinetic transport in fluidic channels facilitates control and separation of ionic species. In nanometer-scale electrokinetic systems, the electric double layer thickness is comparable to characteristic channel dimensions, and this results in nonuniform velocity profiles and strong electric fields transverse to the flow. In such channels, streamwise and transverse electromigration fluxes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 22 21 شماره
صفحات -
تاریخ انتشار 2006