Diophantine Approximation and Coloring

نویسندگان

  • Alan Haynes
  • Sara Munday
چکیده

We demonstrate how connections between graph theory and Diophantine approximation can be used in conjunction to give simple and accessible proofs of seemingly difficult results in both subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Ergodic Theory on Homogeneous Spaces and Metric Number Theory

Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...

متن کامل

Diophantine Properties of Measures and Homogeneous Dynamics

This is a survey of the so-called “quantitative nondivergence” approach to metric Diophantine approximation developed approximately 10 years ago in my collaboration with Margulis. The goal of this paper is to place the theory of approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on Rn. The correspondence betwee...

متن کامل

Diophantine Exponents of Measures: a Dynamical Approach

We place the theory of metric Diophantine approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on Rn. The correspondence between multidimensional Diophantine approximation and dynamics of lattices in Euclidean spaces is discussed in an elementary way, and several recent results obtained by means of this correspon...

متن کامل

Metrical Diophantine approximation for quaternions

The metrical theory of Diophantine approximation for quaternions is developed using recent results in the general theory. In particular, Quaternionic analogues of the classical theorems of Khintchine, Jarnı́k and Jarnı́k-Besicovitch are established. Introduction Diophantine approximation begins with a more quantitative understanding of the density of the rationals Q in the reals R. The starting p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2015