A parallel extended GCD algorithm

نویسنده

  • Sidi Mohamed Sedjelmaci
چکیده

A new parallel extended GCD algorithm is proposed. It matches the best existing parallel integer GCD algorithms of Sorenson and Chor and Goldreich, since it can be achieved in O (n/ logn) time using at most n1+ processors on CRCW PRAM. Sorenson and Chor and Goldreich both use a modular approach which consider the least significant bits. By contrast, our algorithm only deals with the leading bits of the integers u and v, with u v. This approach is more suitable for extended GCD algorithms since the coefficients of the extended version a and b, such that au+ bv = gcd(u, v), are deeply linked with the order of magnitude of the rational v/u and its continuants. Consequently, the computation of such coefficients is much easier. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Implementation of Schönhage's Integer GCD Algorithm

We present a parallel implementation of Schönhage’s integer GCD algorithm on distributed memory architectures. Results are generalized for the extended GCD algorithm. Experiments on sequential architectures show that Schönhage’s algorithm overcomes other GCD algorithms implemented in two well known multiple-precision packages for input sizes larger than about 50000 bytes. In the extended case t...

متن کامل

Two Fast Parallel GCD Algorithms of Many Integers

We present two new parallel algorithms which compute the GCD of n integers of O(n) bits in O(n/ logn) time with O(n) processors in the worst case, for any ε > 0 in CRCW PRAM model. More generally, we prove that computing the GCD of m integers of O(n) bits can be achieved in O(n / logn) parallel time with O(mn ) processors, for any 2 ≤ m ≤ n/ logn, i.e. the parallel time does not depend on the n...

متن کامل

On a Parallel Extended Euclidean Algorithm

A new parallelization of Euclid’s greatest common divisor algorithm is proposed. It matches the best existing integer GCD algorithms since it can be achieved in parallel Oε(n/log n) time using only n processors on a Priority CRCW PRAM.

متن کامل

On the Complexity of the Extended Euclidean Algorithm (extended abstract)

Euclid’s algorithm for computing the greatest common divisor of 2 numbers is considered to be the oldest proper algorithm known ([10]). This algorithm can be amplified naturally in various ways. The GCD problem for more than two numbers is interesting in its own right. Thus, we can use Euclid’s algorithm recursively to compute the GCD of more than two numbers. Also, we can do a constructive com...

متن کامل

Sublinear Parallel Algorithm for Computing the Greatest Common Divisor of Two Integers

The atdvent of practical parallel processors has caused a reexamination of many existing algorithms with'the hope of discovering a parallel implementation. One of the oldest and best know algorithms is Euclid's algorithm for computing the greatest common divisor (GCD). In this paper we present a parallel algorithm to compute the GCD of two integers. Although there have been results in the paral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Discrete Algorithms

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008