Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation.
نویسندگان
چکیده
Both oxidative/nitrosative stress and alterations in DNA methylation are observed during carcinogenesis of different tumor types, but no clear correlation between these events has been demonstrated until now. Melanoma cell lines were previously established after submitting the nontumorigenicmelanocyte lineage, melan-a, to cycles of anchorage blockade. In this work, increased intracellular oxidative species and nitric oxide levels, as well as alterations in the DNA methylation, were observed after melan-a detachment, which were also associated with a decrease in intracellular homocysteine (Hcy), an element in the methionine (universal methyl donor) cycle. This alteration was accompanied by increase in glutathione (GSH) levels and methylated DNA content. Furthermore, a significant increase in dnmt1 and 3b expression was identified along melan-a anchorage blockade. L(G)-Nitro-L-arginine methyl esther (L-NAME), known as a nitric oxide synthase (NOS) inhibitor, and N-acetyl-L-cysteine (NAC) prevented the increase in global DNA methylation, as well as the increase in dnmt1 and 3b expression, observed during melan-a detachment. Interestingly, both L-NAME and NAC did not inhibit nitric oxide (NO) production in these cells, but abrogated superoxide anion production during anchorage blockade. In conclusion, oxidative stress observed during melanocyte anchorage blockade seems to modulate DNA methylation levels and may directly contribute to the acquisition of an anoikis-resistant phenotype through an epigenetic mechanism.
منابع مشابه
HaCaT anchorage blockade leads to oxidative stress, DNA damage and DNA methylation changes
Cell adhesion plays an important role in neoplastic transformation. Thus, anchorage-independent growth and epithelial-mesenchymal transition, which are features associated to anoikis-resistance, are vital steps in cancer progression and metastatic colonization. Cell attachment loss may induce intracellular oxidative stress, which triggers DNA damage as methylation changes. HaCaT lineage cells w...
متن کاملCorrection: Ras and Rac1, Frequently Mutated in Melanomas, Are Activated by Superoxide Anion, Modulate Dnmt1 Level and Are Causally Related to Melanocyte Malignant Transformation
A melanocyte malignant transformation model was developed in our laboratory, in which different melanoma cell lines were obtained after submitting the non-tumorigenic melanocyte lineage melan-a to sequential cycles of anchorage impediment. Our group has already showed that increased superoxide level leads to global DNA hypermemethylation as well increased Dnmt1 expression few hours after melano...
متن کاملCellular Mechanisms of Oxidative Stress and Action in Melanoma
Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on...
متن کاملP-13: Comparison of Sperm Quality, Oxidative Stress, DNA Fragmentation, Protamine Deficiency, and DNA Methylation in Varicocele and Fertile Individuals
s:1993:"Background: There are many approaches that gene expression is controlled in eukaryotes. DNA methylation is one of several epigenetic mechanisms that cells use to control gene expression and lock genes in the "off" position. In addition, sperm DNA damage can correlate with DNA methylation defect. There is evidence that sperm of infertile men contain more DNA damage than fertile men and t...
متن کاملAberrant methylation-mediated silencing of microRNAs contributes to HPV-induced anchorage independence
Cervical cancer and a subset of anogenital and head-and-neck carcinomas are caused by high-risk types of the human papillomavirus (hrHPV). During hrHPV-induced malignant transformation keratinocytes become able to grow anchorage independently, a tumorigenic trait at least partly associated with inactivation of tumor suppressor genes. We used hrHPV-containing keratinocytes to investigate the rol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neoplasia
دوره 9 12 شماره
صفحات -
تاریخ انتشار 2007