On a Parametrization of Positive Semidefinite Matrices with Zeros
نویسندگان
چکیده
We study a class of parametrizations of convex cones of positive semidefinite matrices with prescribed zeros. Each such cone corresponds to a graph whose non-edges determine the prescribed zeros. Each parametrization in this class is a polynomial map associated with a simplicial complex supported on cliques of the graph. The images of the maps are convex cones, and the maps can only be surjective onto the cone of zero-constrained positive semidefinite matrices when the associated graph is chordal and the simplicial complex is the clique complex of the graph. Our main result gives a semialgebraic description of the image of the parametrizations for chordless cycles. The work is motivated by the fact that the considered maps correspond to Gaussian statistical models with hidden variables.
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملOnPositiveQuadratic Forms and theStability of Linear Time-DelaySystems
We consider the problem of constructing Lyapunov functions for linear differential equations with delays. For such systems it is known that stability implies that there exists a quadratic Lyapunov function on the state space, although this is in general infinite dimensional. We give an explicit parametrization of a finite-dimensional subset of the cone of Lyapunov functions using positive semid...
متن کاملPreserving Positivity for Matrices with Sparsity Constraints
Functions preserving Loewner positivity when applied entrywise to positive semidefinite matrices have been widely studied in the literature. Following the work of Schoenberg [Duke Math. J. 9], Rudin [Duke Math. J. 26], and others, it is well-known that functions preserving positivity for matrices of all dimensions are absolutely monotonic (i.e., analytic with nonnegative Taylor coefficients). I...
متن کاملSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 31 شماره
صفحات -
تاریخ انتشار 2010