Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates along the Thai-Myanmar borders.
نویسندگان
چکیده
OBJECTIVE To study the genetic diversity at the msp-1, msp-2, and glurp genes of Plasmodium falciparum (P. falciparum) isolates from 3 endemic areas in Thailand: Tak, Kanchanaburi and Ranong provinces. METHODS A total of 144 P. falciparum isolates collected prior to treatment during January, 2012 to June, 2013 were genotyped. DNA was extracted; allele frequency and diversity of msp-1, msp-2, and glurp genes were investigated by nested polymerase chain reaction. RESULTS P. falciparum isolates in this study had high rate of multiple genotypes infection (96.5%) with an overall mean multiplicity of infection of 3.21. The distribution of allelic families of msp-1 was significantly different among isolates from Tak, Kanchanaburi, and Ranong but not for the msp-2. K1 and MAD20 were the predominant allelic families at the msp-1 gene, whereas alleles belonging to 3D7 were more frequent at the msp-2 gene. The glurp gene had the least diverse alleles. Population structure of P. falciparum isolates from Tak and Ranong was quite similar as revealed by the presence of similar proportions of MAD20 and K1 alleles at msp-1 loci, 3D7 and FC27 alleles at msp-2 loci as well as comparable mean MOI. Isolates from Kanchanaburi had different structures; the most prevalent alleles were K1 and RO33. CONCLUSIONS The present study shows that P. falciparum isolates from Tak and Ranong provinces had similar allelic pattern of msp-1 and msp-2 and diversity but different from Kanchanaburi isolates. These allelic variant profiles are valuable baseline data for future epidemiological study of malaria transmission and for continued monitoring of polymorphisms associated with antimalarial drug resistance in these areas.
منابع مشابه
Plasmodium falciparum Genotype Diversity in Artemisinin Derivatives Treatment Failure Patients along the Thai-Myanmar Border
Genetic characteristics of Plasmodium falciparum may play a role in the treatment outcome of malaria infection. We have studied the association between diversity at the merozoite surface protein-1 (msp-1), msp-2, and glutamate-rich protein (glurp) loci and the treatment outcome of uncomplicated falciparum malaria patients along the Thai-Myanmar border who were treated with artemisinin derivativ...
متن کاملAllelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand
Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and ...
متن کاملPopulation genomics diversity of Plasmodium falciparum in malaria patients attending Okelele Health Centre, Okelele, Ilorin, Kwara State, Nigeria.
BACKGROUND Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. OBJECTIVE To determine the population genomic diversity of Plasmodium falciparum in malaria patients...
متن کاملGenetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran
Abstract Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...
متن کاملGenetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia.
Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Mal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Asian Pacific journal of tropical biomedicine
دوره 4 8 شماره
صفحات -
تاریخ انتشار 2014