Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia.

نویسندگان

  • D E Meyer
  • G A Kong
  • M W Dewhirst
  • M R Zalutsky
  • A Chilkoti
چکیده

Elastin-like polypeptides (ELPs) are biopolymers of the pentapeptide repeat Val-Pro-Gly-Xaa-Gly that undergo an inverse temperature phase transition. They are soluble in aqueous solutions below their transition temperature (T1) but hydrophobically collapse and aggregate at temperatures greater than T1. We hypothesized that ELPs conjugated to drugs would enable thermally targeted drug delivery to solid tumors if their T1 were between body temperature and the temperature in a locally heated region. To test this hypothesis, we synthesized a thermally responsive ELP with a T1 of 41 degrees C and a thermally unresponsive control ELP in Escherichia coli using recombinant DNA techniques. In vivo fluorescence videomicroscopy and radiolabel distribution studies of ELP delivery to human tumors (SKOV-3 ovarian carcinoma and D-54MG glioma) implanted in nude mice demonstrated that hyperthermic targeting of the thermally responsive ELP for 1 h provides a approximately 2-fold increase in tumor localization compared to the same polypeptide without hyperthermia. We observed aggregates of the thermally responsive ELP by fluorescence videomicroscopy within the heated tumor microvasculature but not in control experiments, which demonstrates that the phase transition of the thermally responsive ELP carrier can be engineered to occur in vivo at a specified temperature. By exploiting the phase transition-induced aggregation of these polypeptides, this method provides a new way to thermally target polymer-drug conjugates to solid tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug delivery and drug targeting: Drug targeting using thermally responsive polymers and local hyperthermia.

We report a new thermal targeting method in which a thermally responsive drug carrier selectively accumulates in a solid tumor that is maintained above physiological temperature by externally applied, focused hyperthermia. We synthesized two thermally responsive polymers that were designed to exhibit a lower critical solution temperature (LCST) transition slightly above physiological temperatur...

متن کامل

Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy.

Elastin-like polypeptides are biopolymers composed of the pentapeptide repeat Val-Pro-Gly-Xaa-Gly. Elastin-like polypeptides are soluble in aqueous solution below their transition temperature, but they hydrophobically collapse and aggregate when the temperature is raised above the transition temperature. Previous studies have suggested that the aggregation of these polypeptides in response to e...

متن کامل

Rational Design of “Heat Seeking” Drug Loaded Polypeptide Nanoparticles That Thermally Target Solid Tumors

This paper demonstrates the first example of targeting a solid tumor that is externally heated to 42 °C by "heat seeking" drug-loaded polypeptide nanoparticles. These nanoparticles consist of a thermally responsive elastin-like polypeptide (ELP) conjugated to multiple copies of a hydrophobic cancer drug. To rationally design drug-loaded nanoparticles that exhibit thermal responsiveness in the n...

متن کامل

Application of thermally responsive elastin-like polypeptide fused to a lactoferrin-derived peptide for treatment of pancreatic cancer.

A well characterized, peptide derivative of bovine lactoferrin, L12, has been shown to possess anticancer properties in multiple cell lines. However, adverse side effects in normal tissues and poor plasma kinetics that hinder the clinical effectiveness of current chemotherapeutics also deter the potential for effective delivery of this L12 peptide. To overcome these limitations, we have develop...

متن کامل

Thermal targeting of an acid-sensitive doxorubicin conjugate of elastin-like polypeptide enhances the therapeutic efficacy compared with the parent compound in vivo.

Elastin-like polypeptides (ELP) aggregate in response to mild hyperthermia, but remain soluble under normal physiologic conditions. ELP macromolecules can accumulate in solid tumors because of the enhanced permeability and retention effect. Tumor retention of ELPs can be further enhanced through hyperthermia-induced aggregation of ELPs by local heating of the tumor. We evaluated the therapeutic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 61 4  شماره 

صفحات  -

تاریخ انتشار 2001