Projective Duality and a Chern-mather Involution
نویسنده
چکیده
We observe that linear relations among Chern-Mather classes of projective varieties are preserved by projective duality. We deduce the existence of an explicit involution on a part of the Chow group of projective space, encoding the effect of duality on Chern-Mather classes. Applications include Plücker formulae, constraints on self-dual varieties, generalizations to singular varieties of classical formulas for the degree of the dual and the dual defect, formulas for the Euclidean distance degree, and computations of Chern-Mather classes and local Euler obstructions for cones.
منابع مشابه
The Chern Classes of the Verlinde Bundles
A formula for the first Chern class of the Verlinde bundle over the moduli space of smooth genus g curves is given. A finite-dimensional argument is presented in rank 2 using geometric symmetries obtained from strange duality, relative Serre duality, and Wirtinger duality together with the projective flatness of the Hitchin connection. A derivation using conformal-block methods is presented in ...
متن کاملChern classes and Characteristic Cycles of Determinantal Varieties
Let K be an algebraically closed field of characteristic 0. For m ≥ n, we define τm,n,k to be the set of m× n matrices over K with kernel dimension ≥ k. This is a projective subvariety of Pmn−1, and is called the (generic) determinantal variety. In most cases τm,n,k is singular with singular locus τm,n,k+1. In this paper we give explicit formulas computing the Chern-Mather class (cM ) and the C...
متن کاملIntroduction to the Strange Duality Conjecture for Surfaces
The goal of this document is to give a non-technical and imprecise introduction to the strange duality conjecture for surfaces. On the way, we will spend time on Chern classes and moduli of coherent sheaves. Throughout, S will be a smooth projective surface over C and KS will denote a canonical divisor on S. All of the general concepts, such as Chern classes, make sense for varieties of other d...
متن کاملThe Chevalley Involution and a Duality of Weight Varieties
In this paper we show that the classical notion of association of projective point sets, [DO], Chapter III, is a special case of a general duality between weight varieties (i.e torus quotients of flag manifolds) of a reductive group G induced by the action of the Chevalley involution on the set of these quotients. We compute the dualities explicitly on both the classical and quantum levels for ...
متن کاملCounting Higher Genus Curves with Crosscaps in Calabi-Yau Orientifolds
We compute all loop topological string amplitudes on orientifolds of local Calabi-Yau manifolds, by using geometric transitions involving SO/Sp Chern-Simons theory, localization on the moduli space of holomorphic maps with involution, and the topological vertex. In particular we count Klein bottles and projective planes with any number of handles in some Calabi-Yau orientifolds.
متن کامل