Localization of Impaired Kinesthetic Processing Post-stroke

نویسندگان

  • Jeffrey M. Kenzie
  • Jennifer A. Semrau
  • Sonja E. Findlater
  • Amy Y. Yu
  • Jamsheed A. Desai
  • Troy M. Herter
  • Michael D. Hill
  • Stephen H. Scott
  • Sean P. Dukelow
چکیده

Kinesthesia is our sense of limb motion, and allows us to gauge the speed, direction, and amplitude of our movements. Over half of stroke survivors have significant impairments in kinesthesia, which leads to greatly reduced recovery and function in everyday activities. Despite the high reported incidence of kinesthetic deficits after stroke, very little is known about how damage beyond just primary somatosensory areas affects kinesthesia. Stroke provides an ideal model to examine structure-function relationships specific to kinesthetic processing, by comparing lesion location with behavioral impairment. To examine this relationship, we performed voxel-based lesion-symptom mapping and statistical region of interest analyses on a large sample of sub-acute stroke subjects (N = 142) and compared kinesthetic performance with stroke lesion location. Subjects with first unilateral, ischemic stroke underwent neuroimaging and a comprehensive robotic kinesthetic assessment (~9 days post-stroke). The robotic exoskeleton measured subjects' ability to perform a kinesthetic mirror-matching task of the upper limbs without vision. The robot moved the stroke-affected arm and subjects' mirror-matched the movement with the unaffected arm. We found that lesions both within and outside primary somatosensory cortex were associated with significant kinesthetic impairments. Further, sub-components of kinesthesia were associated with different lesion locations. Impairments in speed perception were primarily associated with lesions to the right post-central and supramarginal gyri whereas impairments in amplitude of movement perception were primarily associated with lesions in the right pre-central gyrus, anterior insula, and superior temporal gyrus. Impairments in perception of movement direction were associated with lesions to bilateral post-central and supramarginal gyri, right superior temporal gyrus and parietal operculum. All measures of impairment shared a common association with damage to the right supramarginal gyrus. These results suggest that processing of kinesthetic information occurs beyond traditional sensorimotor areas. Additionally, this dissociation between kinesthetic sub-components may indicate specialized processing in these brain areas that form a larger distributed network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between visuospatial neglect and kinesthetic deficits after stroke.

BACKGROUND After stroke, visuospatial and kinesthetic (sense of limb motion) deficits are common, occurring in approximately 30% and 60% of individuals, respectively. Although both types of deficits affect aspects of spatial processing necessary for daily function, few studies have investigated the relationship between these 2 deficits after stroke. OBJECTIVE We aimed to characterize the rela...

متن کامل

Robotic identification of kinesthetic deficits after stroke.

BACKGROUND AND PURPOSE Kinesthesia, the sense of body motion, is essential to proper control and execution of movement. Despite its importance for activities of daily living, no current clinical measures can objectively measure kinesthetic deficits. The goal of this study was to use robotic technology to quantify prevalence and severity of kinesthetic deficits of the upper limb poststroke. ME...

متن کامل

Impaired Upper Limb Motor Function in Post-Stroke Patients and Its Impact on Trunk Control and Mobility- a Cross-Sectional Study

Objective: To find the impact of impaired upper limb motor function on trunk control and mobility in chronic post-stroke survivors so that the upper limb function should be enhanced as a core component of rehabilitation. Methods: This analytical cross-sectional study was conducted from March 2021 to August 2021 at Rehabilitation Center for the Physically Disabled, Peshawar, Pakistan. A total o...

متن کامل

Parallel processing in human audition and post-lesion plasticity

Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...

متن کامل

Parallel processing in human audition and post-lesion plasticity

Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016