Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures.
نویسندگان
چکیده
Green fluorescent protein has revolutionized cell labeling and molecular tagging, yet the driving force and mechanism for its spontaneous fluorophore synthesis are not established. Here we discover mutations that substantially slow the rate but not the yield of this posttranslational modification, determine structures of the trapped precyclization intermediate and oxidized postcyclization states, and identify unanticipated features critical to chromophore maturation. The protein architecture contains a dramatic approximately 80 degrees bend in the central helix, which focuses distortions at G67 to promote ring formation from amino acids S65, Y66, and G67. Significantly, these distortions eliminate potential helical hydrogen bonds that would otherwise have to be broken at an energetic cost during peptide cyclization and force the G67 nitrogen and S65 carbonyl oxygen atoms within van der Waals contact in preparation for covalent bond formation. Further, we determine that under aerobic, but not anaerobic, conditions the Gly-Gly-Gly chromophore sequence cyclizes and incorporates an oxygen atom. These results lead directly to a conjugation-trapping mechanism, in which a thermodynamically unfavorable cyclization reaction is coupled to an electronic conjugation trapping step, to drive chromophore maturation. Moreover, we propose primarily electrostatic roles for the R96 and E222 side chains in chromophore formation and suggest that the T62 carbonyl oxygen is the base that initiates the dehydration reaction. Our molecular mechanism provides the basis for understanding and eventually controlling chromophore creation.
منابع مشابه
The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.
The crystal structure of a colorless variant of green fluorescent protein (GFP) containing the Y66L substitution has been determined to 1.5 A. Crystallographic evidence is presented for the formation of a trapped intermediate on the pathway of chromophore maturation, where the peptide backbone of residues 65-67 has condensed to form a five-membered heterocyclic ring. The hydroxyl leaving group ...
متن کاملThe dual-basin landscape in GFP folding.
Recent experimental studies suggest that the mature GFP has an unconventional landscape composed of an early folding event with a typical funneled landscape, followed by a very slow search and rearrangement step into the locked, active chromophore-containing structure. As we have shown previously, the substantial difference in time scales is what generates the observed hysteresis in thermodynam...
متن کاملStructural evidence for a dehydrated intermediate in green fluorescent protein chromophore biosynthesis.
The acGFPL is the first-identified member of a novel, colorless and non-fluorescent group of green fluorescent protein (GFP)-like proteins. Its mutant aceGFP, with Gly replacing the invariant catalytic Glu-222, demonstrates a relatively fast maturation rate and bright green fluorescence (lambda(ex) = 480 nm, lambda(em) = 505 nm). The reverse G222E single mutation in aceGFP results in the immatu...
متن کاملBase catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein.
In green fluorescent protein (GFP), chromophore biosynthesis is initiated by a spontaneous main-chain condensation reaction. Nucleophilic addition of the Gly67 amide nitrogen to the Ser65 carbonyl carbon is catalyzed by the protein fold and leads to a heterocyclic intermediate. To investigate this mechanism, we substituted the highly conserved residues Arg96 and Glu222 in enhanced GFP (EGFP). I...
متن کاملMechanistic diversity of red fluorescence acquisition by GFP-like proteins.
This review aims to summarize our current state of knowledge of several post-translational modification mechanisms known to yield red fluorescence in the family of GFP-like (green fluorescent protein-like) proteins. We begin with a brief review of the maturation mechanism that leads to green fluorescence in GFPs. The main body of this article is focused on a series of main chain redox and beta-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 21 شماره
صفحات -
تاریخ انتشار 2003