Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells.
نویسندگان
چکیده
OBJECTIVE The purpose of this study was to determine whether lysosome trafficking and targeting of acid sphingomyelinase (ASMase) to this organelle contribute to the formation of lipid raft (LR) signaling platforms in the membrane of coronary arterial endothelial cells (CAECs). METHODS AND RESULTS By measurement of fluorescent resonance energy transfer (FRET), it was found that in FasL-stimulated CAECs, membrane lamp1 (a lysosome marker protein) or Fas and GM1 (a LR marker) were trafficking together. Cofocal colocalization assay showed that ceramide was enriched in these LR platforms. Further studies demonstrated that these ceramide molecules in LR platforms were colocalized with ASMase, a ceramide producing enzyme. Fluorescence imaging of living CAECs loaded with lysosomal specific dyes demonstrated that lysosomes fused with membrane on FasL stimulation. In the presence of lysosome function inhibitors, bafilomycin (Baf) or glycyl-L-phenylalanine-beta-naphthylamide (GPN), these FasL-induced changes were abolished. Moreover, this FasL-induced formation of LR platforms was also blocked in ECs transfected with siRNA of sortilin, an intracellular transporter for targeting of ASMase to lysosomes. Functionally, FasL-induced impairment of vasodilator response was reversed by lysosomal inhibitors or sortilin gene silencing. CONCLUSIONS Lysosomal trafficking and targeting of ASMase are importantly involved in LRs clustering in ECs membrane, leading to the formation of signaling platforms or signalosomes.
منابع مشابه
Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells.
We have demonstrated that the formation of lipid raft (LR)-redox signaling platforms membrane is associated with activation of acid sphingomyelinase (ASMase) in coronary arterial endothelial cells (CAECs). Given that the trafficking of lysosomal vesicles might play an essential role in ASMase activation, the present study tested whether lysosomal vesicles contribute to the formation of LR redox...
متن کاملMembrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin.
AIMS The adipokine visfatin, produced during obesity, has been reported to participate in the development of cardiovascular disease associated with metabolic syndrome. The present study was designed to test a hypothesis that visfatin causes coronary endothelial dysfunction through lysosome trafficking and fusion to cell membranes, membrane raft (MR) clustering, and formation of redox signalosom...
متن کاملCritical role of lipid raft redox signaling platforms in endostatin-induced coronary endothelial dysfunction.
OBJECTIVE Endostatin (EST) was found to initiate a redox signaling cascade associated with activation of NADPH oxidase in endothelial cells (ECs). The present study tested whether EST stimulates clustering of ceramide-enriched lipid rafts (LRs), which assembles and activates NADPH oxidase to form redox signaling platforms. METHODS AND RESULTS Using confocal microscopy, we first demonstrated a...
متن کاملRequirement of translocated lysosomal V1 H+-ATPase for activation of membrane acid sphingomyelinase and raft clustering in coronary endothelial cells
Acid sphingomyelinase (ASM) mediates the formation of membrane raft (MR) redox signalosomes in a process that depends on a local acid microenvironment in coronary arterial endothelial cells (CAECs). However, it is not known how this local acid microenvironment is formed and maintained. The present study hypothesized that lysosomal V1 H(+)-ATPase provides a hospitable acid microenvironment for a...
متن کاملAcid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells.
This study examined the role of acid sphingomyelinase (ASM) and its redox amplification in mediating the formation of lipid raft (LR) redox signaling platforms in coronary arterial endothelial cells (CAECs). Using small interference RNA (siRNA) of ASM, Fas ligand (FasL)-induced increase in ASM activity, production of ceramide, and LR clustering in CAECs were blocked, and clustered Fas was also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 28 11 شماره
صفحات -
تاریخ انتشار 2008