Lyapunov Stability of Complementarity and Extended Systems

نویسندگان

  • M. Kanat Camlibel
  • Jong-Shi Pang
  • Jinglai Shen
چکیده

A linear complementarity system (LCS) is a piecewise linear dynamical system consisting of a linear time-invariant ordinary differential equation (ODE) parameterized by an algebraic variable that is required to be a solution to a finite-dimensional linear complementarity problem (LCP), whose constant vector is a linear function of the differential variable. Continuing the authors’ recent investigation of the LCS from the combined point of view of system theory and mathematical programming, this paper addresses the important system-theoretic properties of exponential and asymptotic stability for an LCS with a C1 state trajectory. The novelty of our approach lies in our employment of a quadratic Lyapunov function that involves the auxiliary algebraic variable of the LCS; when expressed in the state variable alone, the Lyapunov function is piecewise quadratic, and thus nonsmooth. The nonsmoothness feature invalidates standard stability analysis that is based on smooth Lyapunov functions. In addition to providing sufficient conditions for exponential stability, we establish a generalization of the well-known LaSalle invariance theorem for the asymptotic stability of a smooth dynamical system to the LCS, which is intrinsically a nonsmooth system. Sufficient matrix-theoretic copositivity conditions are introduced to facilitate the verification of the stability properties. Properly specialized, the latter conditions are satisfied by a passive-like LCS and certain hybrid linear systems having common quadratic Lyapunov functions. We provide numerical examples to illustrate the stability results. We also develop an extended local exponential stability theory for nonlinear complementarity systems and differential variational inequalities, based on a new converse theorem for ODEs with B-differentiable right-hand sides. The latter theorem asserts that the existence of a “B-differentiable Lyapunov function” is a necessary and sufficient condition for the exponential stability of an equilibrium of such a differential system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Gain and Phase Margins in Lur’e Nonlinear Systems using Extended Circle Criterion

Nonlinearity is one of the main behaviors of systems in the real world. Therefore, it seems necessary to introduce a method to determine the stability margin of these systems. Although the gain and phase margins are established criteria for the analysis of linear systems, finding a specific way to determine the true value of these margins in nonlinear systems in general is an ongoing research i...

متن کامل

Robust Finite-time Stability and Stabilization of Linear Uncertain Time-delay Systems

Robust finite-time stability and stabilization problems for a class of linear uncertain time-delay systems are studied. The concept of finite-time stability is extended to linear uncertain time-delay systems. Based on the Lyapunov method and properties of matrix inequalities, a sufficient condition that ensures finite-time stability of linear uncertain time-delay systems is given. By virtue of ...

متن کامل

A Bi-level Formulation for Centralized Resource Allocation DEA Models

In this paper, the common centralized DEA models are extended to the bi-level centralized resource allocation (CRA) models based on revenue efficiency. Based on the Karush–Kuhn–Tucker (KKT) conditions, the bi-level CRA model is reduced to a one-level mathematical program subject to complementarity constraints (MPCC). A recurrent neural network is developed for solving this one-level mathematica...

متن کامل

Fuzzy Lyapunov stability and exponential stability in control ‎systems‎

Fuzzy control systems have had various applications in a wide range of science and engineering in recent years. Since an unstable control system is typically useless and potentially dangerous, stability is the most important requirement for any control system (including fuzzy control system). Conceptually, there are two types of stability for control systems: Lyapunov stability (a special case ...

متن کامل

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2006