Single-shot spatially resolved characterization of laser-induced shock waves in water.
نویسندگان
چکیده
We have developed an optical method for single-shot spatially resolved shock-wave peak-pressure measurements. A schlieren technique and streak photography were used to follow the propagation of the shock wave. The shock position r as a function of time was extracted from the streak images by digital image-processing techniques. The resulting r(t) curves were differentiated with respect to time to yield shock-wave velocities that were converted to shock pressures with the aid of the equation of the state of the medium. Features and limitations of the technique are demonstrated and discussed on the basis of measurements of shock-wave amplitudes generated by laser-induced breakdown in water. For this purpose, laser pulses of 6-ns duration and pulse energies of 1 and 10 mJ were focused into a cuvette containing water. Complete p(t) curves were obtained with a temporal resolution in the subnanosecond range. The total acquisition and processing time for a single event is ~2 min. The shock-peak pressures at the source were found to be 8.4 ? 1.5 and 11.8 ? 1.6 GPa for pulse energies of 1 and 10 mJ, respectively. Within the first two source radii, the shock-wave pressure p(r) was found to decay on average in proportion to r(-1.3?0.2) for both pulse energies. Thereafter the pressure dropped in proportion to r(-2.2?0.1). In water the method can be used to measure shock-wave amplitudes exceeding 0.1 GPa. Because it is a single-shot technique, the method is especially suited for investigating events with large statistical variations.
منابع مشابه
Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer
Shock waves in condensed matter are of great importance for many areas of science and technology ranging from inertially confined fusion to planetary science and medicine. In laboratory studies of shock waves, there is a need in developing diagnostic techniques capable of measuring parameters of materials under shock with high spatial resolution. Here, time-resolved interferometric imaging is u...
متن کاملSpatially resolved flow velocity measurements using laser-induced fluorescence from a pulsed laser.
We describe how spatially resolved velocity measurements can be acquired using a pulse-amplified single-mode cw laser with a potential of single-shot measurements. The laser beam was tuned to the point of maximum slope of a Doppler-broadened absorption profile of I(2), which was seeded into the flow. The beam was then split into two components and sent counterpropagating through the measurement...
متن کاملSystematical Characterization of Material Response to Microscale Laser Shock Peening
The response of materials after microscale laser shock peening (mLSP) was experimentally characterized and compared with the theoretical prediction from FEM analysis in microlength level. Since mLSP is predominantly a mechanical process instead of a thermal process, the characterization focuses on mechanical properties and associated microstructures. An X-ray microdiffraction technique was appl...
متن کاملDirect visualization of laser-driven focusing shock waves.
Direct real-time visualization and measurement of laser-driven shock generation, propagation, and 2D focusing in a sample are demonstrated. A substantial increase of the pressure at the convergence of the cylindrical acoustic shock front is observed experimentally and simulated numerically. Single-shot acquisitions using a streak camera reveal that at the convergence of the shock wave in water ...
متن کاملDeskewing by space-variant deblurring
Skew and motion blur are significant challenges when camera and scene of interest are in two different media. Skew occurs due to spatially varying refraction on a dynamic water surface, whereas motion blur results from multiple intensities impinging on the imaging sensor during camera exposure time due to time varying refraction. In this paper, we propose a technique to restore underwater image...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 37 19 شماره
صفحات -
تاریخ انتشار 1998