The Role of NF-κB and H3K27me3 Demethylase, Jmjd3, on the Anthrax Lethal Toxin Tolerance of RAW 264.7 Cells
نویسندگان
چکیده
BACKGROUND In Bacillus anthracis, lethal toxin (LeTx) is a critical virulence factor that causes immune suppression and toxic shock in the infected host. NF-kappaB is a key mediator of the inflammatory response and is crucial for the plasticity of first level immune cells such as macrophages, monocytes and neutrophils. In macrophages, this inflammatory response, mediated by NF-kappaB, can regulate host defense against invading pathogens. A Jumonji C family histone 3 lysine-27 (H3K27) demethylase, Jmjd3, plays a crucial role in macrophage plasticity and inflammation. Here we report that NF-kappaB and Jmjd3 can modulate the LeTx intoxication resistance of RAW 264.7 cells. PRINCIPAL FINDINGS This study showed that a 2 h exposure of macrophages to LeTx caused substantial cell death with a survival rate of around 40%. The expression of the Jmjd3 gene was induced 8-fold in intoxication-resistant cells generated by treatment with lipopolysaccharides of RAW 264.7 cells. These intoxication-resistant cell lines (PLx intox and PLxL intox) were maintained for 8 passages and had a survival rate of around 100% on secondary exposure to LeTx and lipopolysaccharides. Analysis of NF-kappaB gene expression showed that the expression of p100, p50 and p65 was induced around 20, 7 and 4 fold, respectively, in both of the intoxication-resistant cell lines following a 2 h treatment with PLxL (0.1+0.1+1 microg/ml). In contrast, these NF-kappaB genes were not induced following treatment with PLx treatment at the same concentrations. CONCLUSIONS Although LeTx influences macrophage physiology and causes defects of some key signaling pathways such as GSK3beta which contributes to cytotoxicity, these results indicate that modulation of NF-kappaB by p50, p100 and Jmjd3 could be vital for the recovery of murine macrophages from exposure to the anthrax lethal toxin.
منابع مشابه
Gambogic acid inhibits LPS-induced macrophage pro-inflammatory cytokine production mainly through suppression of the p38 pathway
Objective(s): In traditional Chinese medicine, gamboge can detoxify bodies, kill parasites, and act as a hemostatic agent. Recent studies have demonstrated that gambogic acid (GBA) suppressed inflammation in arthritis, and also presented antitumor effect. Thus, this study investigated the new biological properties of GBA on macrophages.Materials and Methods: RAW 264.7 cells were pretreated with...
متن کاملTranscriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation
The removal of histone H3 trimethylation at lysine residue 27 (H3K27me3) plays a critical role in the transcriptional initiation of developmental genes. The H3K27me3-specific KDM6 demethylases JMJD3 and UTX are responsible for the transcriptional initiation of various developmental genes, but some genes are expressed in a KDM6 demethylase-independent manner. To address the role of H3K27me3 in t...
متن کاملThe pharmacological role of histone demethylase JMJD3 inhibitor GSK-J4 on glioma cells
Glioma is regarded as the most prevalent malignant carcinoma of the central nervous system, and lack of effective treatment. Thus, the development of new therapeutic strategies targeting glioma is of significant clinical importance. In the present study, histone H3K27 demethylase jumonji domain-containing protein 3 (JMJD3) was investigated as target for glioma treatment. The mRNA of JMJD3 was o...
متن کاملControl of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3.
The recent discovery of H3K27me3 demethylases suggests that H3K27me3 may dynamically regulate gene expression, but this potential role in mammalian tissue homeostasis remains uncharacterized. In the epidermis, a tissue that balances stem cell self-renewal with differentiation, H3K27me3, occupies the promoters of many differentiation genes. During calcium-induced differentiation, H3K27me3 was er...
متن کاملHistone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus
Aberrant CD11a overexpression in CD4+ T cells induces T cell auto-reactivity, which is an important factor for systemic lupus erythematosus (SLE) pathogenesis. Although many studies have focused on CD11a epigenetic regulation, little is known about histone methylation. JMJD3, as a histone demethylase, is capable of specifically removing the trimethyl group from the H3K27 lysine residue, trigger...
متن کامل