Folic acid derived-P5779 mimetics regulate DAMP-mediated inflammation through disruption of HMGB1:TLR4:MD-2 axes

نویسندگان

  • Shan Sun
  • Mingzhu He
  • Yongjun Wang
  • Huan Yang
  • Yousef Al-Abed
چکیده

High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) protein that mediates inflammatory responses after infection or injury. Previously, we reported a peptide inhibitor of HMGB1 (P5779) that acts by directly interrupting HMGB1/MD-2 binding. Here, fingerprint similarity search and docking studies suggest folic acid derived-drugs function as P5779 mimetopes. Molecular dynamic (MD) simulation studies demonstrate that folic acid mimics the binding of P5779 at the TLR4 and MD-2 intersection. In surface plasmon resonance (SPR) studies, these drugs showed direct binding to TLR4/MD-2 but not HMGB1. Furthermore, these P5779 mimetopes inhibit HMGB1 and MD-2 binding and suppress HMGB1-induced TNF release in human macrophages in the nanomolar range. We assert from our findings that their demonstrated anti-inflammatory effects may be working through TLR4-dependent signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MD-2 is required for disulfide HMGB1–dependent TLR4 signaling

Innate immune receptors for pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) orchestrate inflammatory responses to infection and injury. Secreted by activated immune cells or passively released by damaged cells, HMGB1 is subjected to redox modification that distinctly influences its extracellular functions. Previously, it was unknown how the TLR4 signalosome distinguished be...

متن کامل

HMGB1-Driven Inflammation and Intimal Hyperplasia After Arterial Injury Involves Cell-Specific Actions Mediated by TLR4.

OBJECTIVE Endoluminal vascular interventions such as angioplasty initiate a sterile inflammatory response resulting from local tissue damage. This response drives the development of intimal hyperplasia (IH) that, in turn, can lead to arterial occlusion. We hypothesized that the ubiquitous nuclear protein and damage-associated molecular pattern molecule, high-mobility group box 1 (HMGB1), is one...

متن کامل

The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis.

In contrast to microbially triggered inflammation, mechanisms promoting sterile inflammation remain poorly understood. Damage-associated molecular patterns (DAMPs) are considered key inducers of sterile inflammation following cell death, but the relative contribution of specific DAMPs, including high-mobility group box 1 (HMGB1), is ill defined. Due to the postnatal lethality of Hmgb1-knockout ...

متن کامل

High-Mobility Group Box 1 Inhibits Gastric Ulcer Healing through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products

High-mobility group box 1 (HMGB1) was initially discovered as a nuclear protein that interacts with DNA as a chromatin-associated non-histone protein to stabilize nucleosomes and to regulate the transcription of many genes in the nucleus. Once leaked or actively secreted into the extracellular environment, HMGB1 activates inflammatory pathways by stimulating multiple receptors, including Toll-l...

متن کامل

Up-regulation of TLR2 and TLR4 in high mobility group Box1-stimulated macrophages in pulpitis patients

Objective(s): High Mobility Group Box1 (HMGB1) is a nonhistone, DNA-binding protein that serves a crucial role in regulating gene transcription and is involved in a variety of proinflammatory, extracellular activities. The aim of this study was to explore whether HMGB1 stimulation can up-regulate the expression of Toll-like Receptor 2 (TLR2) and Toll-like Receptor 4 (TLR4) on macrophages from p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018