Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome.

نویسندگان

  • Dag H Yasui
  • Michael L Gonzales
  • Justin O Aflatooni
  • Florence K Crary
  • Daniel J Hu
  • Bryant J Gavino
  • Mari S Golub
  • John B Vincent
  • N Carolyn Schanen
  • Carl O Olson
  • Mojgan Rastegar
  • Janine M Lasalle
چکیده

Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT. As expected, genetic deletion of Mecp2 exons 3 and/or 4 recapitulates RTT-like neurologic defects in mice. However, Mecp2 exon 2 knockout mice have normal neurologic function. Here, a naturally occurring MECP2 exon 1 mutation is recapitulated in a mouse model by genetic engineering. A point mutation in the translational start codon of Mecp2 exon 1, transmitted through the germline, ablates MeCP2-e1 translation while preserving MeCP2-e2 production in mouse brain. The resulting MeCP2-e1 deficient mice developed forelimb stereotypy, hindlimb clasping, excessive grooming and hypo-activity prior to death between 7 and 31 weeks. MeCP2-e1 deficient mice also exhibited abnormal anxiety, sociability and ambulation. Despite MeCP2-e1 and MeCP2-e2 sharing, 96% amino acid identity, differences were identified. A fraction of phosphorylated MeCP2-e1 differed from the bulk of MeCP2 in subnuclear localization and co-factor interaction. Furthermore, MeCP2-e1 exhibited enhanced stability compared with MeCP2-e2 in neurons. Therefore, MeCP2-e1 deficient mice implicate MeCP2-e1 as the sole contributor to RTT with non-redundant functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical profiles of four patients with Rett syndrome carrying a novel exon 1 mutation or genomic rearrangement in the MECP2 gene.

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene encoding methyl CpG binding protein 2 (MeCP2). Recently, a new isoform of MeCP2 including exon 1 was identified. This new isoform is more abundantly expressed in brain than the isoform including exons 2-4. Very little is known about the phenotypes associated with mutations in exon 1 of MECP2 sinc...

متن کامل

Deleterious mutations in exon 1 of MECP2 in Rett syndrome.

The MECP2 gene is responsible for 80-85% of typical cases of Rett syndrome with deleterious mutations affecting exons 3 and 4. Recently, an alternate transcript including exon 1 was discovered with a new protein isoform (MeCP2_e1) much more abundant in brain. We screened exon 1 of MECP2 for mutations and for large rearrangements in a panel of 212 typical cases of Rett syndrome and one family ca...

متن کامل

Microduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: A Case Report

Rett syndrome (RS) is a neurodevelopmental infantile disease characterized by an early normal psychomotor development followed by a regression in the acquisition of normal developmental stages. In the majority of cases, it leads to a sporadic mutation in the MECP2 gene, which is located on the X chromosome. However, this syndrome has also been associated with microdeletions, gene translocations...

متن کامل

Characterization of MeCP2e1 Transgenic Mice

Rett Syndrome (RTT), a neurodevelopmental disorder characterized by loss of speech and purposeful limb movement, seizures, breathing abnormalities, and often autistic features, is caused by mutations in methyl CpG binding protein 2 (MeCP2). In 2004, a second isoform of MeCP2, called MeCP2e1, was discovered. While MeCP2e1 appears to be the predominant isoform in the brains of both humans and mic...

متن کامل

Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice.

BACKGROUND Mutations in the methyl-CpG binding protein 2 (MeCP2) gene cause Rett syndrome (RTT), a neurodevelopmental disorder that is accompanied by a broad array of behavioral phenotypes, mainly affecting females. Methyl-CpG binding protein 2 is a transcriptional repressor that is widely expressed in all tissues. METHODS To investigate whether the postnatal loss of MeCP2 in the forebrain is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 9  شماره 

صفحات  -

تاریخ انتشار 2014