Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome.
نویسندگان
چکیده
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT. As expected, genetic deletion of Mecp2 exons 3 and/or 4 recapitulates RTT-like neurologic defects in mice. However, Mecp2 exon 2 knockout mice have normal neurologic function. Here, a naturally occurring MECP2 exon 1 mutation is recapitulated in a mouse model by genetic engineering. A point mutation in the translational start codon of Mecp2 exon 1, transmitted through the germline, ablates MeCP2-e1 translation while preserving MeCP2-e2 production in mouse brain. The resulting MeCP2-e1 deficient mice developed forelimb stereotypy, hindlimb clasping, excessive grooming and hypo-activity prior to death between 7 and 31 weeks. MeCP2-e1 deficient mice also exhibited abnormal anxiety, sociability and ambulation. Despite MeCP2-e1 and MeCP2-e2 sharing, 96% amino acid identity, differences were identified. A fraction of phosphorylated MeCP2-e1 differed from the bulk of MeCP2 in subnuclear localization and co-factor interaction. Furthermore, MeCP2-e1 exhibited enhanced stability compared with MeCP2-e2 in neurons. Therefore, MeCP2-e1 deficient mice implicate MeCP2-e1 as the sole contributor to RTT with non-redundant functions.
منابع مشابه
Clinical profiles of four patients with Rett syndrome carrying a novel exon 1 mutation or genomic rearrangement in the MECP2 gene.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene encoding methyl CpG binding protein 2 (MeCP2). Recently, a new isoform of MeCP2 including exon 1 was identified. This new isoform is more abundantly expressed in brain than the isoform including exons 2-4. Very little is known about the phenotypes associated with mutations in exon 1 of MECP2 sinc...
متن کاملDeleterious mutations in exon 1 of MECP2 in Rett syndrome.
The MECP2 gene is responsible for 80-85% of typical cases of Rett syndrome with deleterious mutations affecting exons 3 and 4. Recently, an alternate transcript including exon 1 was discovered with a new protein isoform (MeCP2_e1) much more abundant in brain. We screened exon 1 of MECP2 for mutations and for large rearrangements in a panel of 212 typical cases of Rett syndrome and one family ca...
متن کاملMicroduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: A Case Report
Rett syndrome (RS) is a neurodevelopmental infantile disease characterized by an early normal psychomotor development followed by a regression in the acquisition of normal developmental stages. In the majority of cases, it leads to a sporadic mutation in the MECP2 gene, which is located on the X chromosome. However, this syndrome has also been associated with microdeletions, gene translocations...
متن کاملCharacterization of MeCP2e1 Transgenic Mice
Rett Syndrome (RTT), a neurodevelopmental disorder characterized by loss of speech and purposeful limb movement, seizures, breathing abnormalities, and often autistic features, is caused by mutations in methyl CpG binding protein 2 (MeCP2). In 2004, a second isoform of MeCP2, called MeCP2e1, was discovered. While MeCP2e1 appears to be the predominant isoform in the brains of both humans and mic...
متن کاملPostnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice.
BACKGROUND Mutations in the methyl-CpG binding protein 2 (MeCP2) gene cause Rett syndrome (RTT), a neurodevelopmental disorder that is accompanied by a broad array of behavioral phenotypes, mainly affecting females. Methyl-CpG binding protein 2 is a transcriptional repressor that is widely expressed in all tissues. METHODS To investigate whether the postnatal loss of MeCP2 in the forebrain is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2014