On R−complex Finsler spaces
نویسندگان
چکیده
In the present paper we submit for study a new class of Finsler spaces. Through restricting the homogeneity condition from the definition of a complex Finsler metric to real scalars, λ ∈ R, is obtained a wider class of complex spaces, called by us the R−complex Finsler spaces. Two subclasses are taken in consideration: the Hermitian and the non-Hermitian R−complex Finsler spaces. In an R−complex Finsler space we determine a nonlinear connection from the variational problem similar as in the complex Lagrange geometry ([11]) for the Hermitian case and similar as in the real Lagrange geometry ([5, 7, 9]) for the non-Hermitian case. There are studied the N− complex linear connections in each of two classes. M.S.C. 2000: 53B40, 53C60.
منابع مشابه
R-complex Finsler Spaces with (α, Β)-metric
In this paper we introduce the class of R-complex Finsler spaces with (α, β)-metrics and study some important exemples: R-complex Randers spaces, R-complex Kropina spaces. The metric tensor field of a R-complex Finsler space with (α, β)-metric is determined (§2). A special approach is dedicated to the R-complex Randers spaces (§3). AMS Mathematics Subject Classification (2000): 53B40, 53C60
متن کاملA generalization of the holomorphic flag curvature of complex Finsler spaces
The notion of holomorphic bi-flag curvature for a complex Finsler space (M, F ) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. By means of holomorphic curvature and holomorphic flag curvature of a complex Finsler space, a special approach is devoted to obtain the characterizations of the holomorphic bi-flag curvature. For the class of generalized...
متن کاملThe Holomorphic Bisectional Curvature of the Complex Finsler Spaces
The notion of holomorphic bisectional curvature for a complex Finsler space (M, F ) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. By means of holomorphic curvature and holomorphic flag curvature of a complex Finsler space, a special approach is emloyed to obtain the characterizations of the holomorphic bisectional curvature. For the class of gen...
متن کاملIsometric Submersions of Finsler Manifolds
The notion of isometric submersion is extended to Finsler spaces and it is used to construct examples of Finsler metrics on complex and quaternionic projective spaces all of whose geodesics are (geometrical) circles.
متن کاملOn quasi-Einstein Finsler spaces
The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces. Quasi-Einstein metrics serve also as solution to the Ricci flow equation. Here, the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined. In compact case, it is proved that the quasi-Einstein met...
متن کامل