Flexible spatial models for kriging and cokriging using moving averages and the fast Fourier Transform (FFT)

نویسندگان

  • Jay M. Ver Hoef
  • Noel A. Cressie
  • Ronald P. Barry
چکیده

Models for spatial autocorrelation and cross-correlation depend on the distance and direction separating two locations, and are constrained so that for all possible sets of locations, the covariance matrices implied from the models remain nonnegative-definite. Based on spatial correlation, optimal linear predictors can be constructed that yield complete maps of spatial fields from incomplete and noisy spatial data. This methodology is called kriging if the data are of only one variable type, and it is called cokriging if it is of two or more variable types. Historically, to satisfy the nonnegative-definite condition, cokriging has used coregionalization models for cross-variograms, even though this class of models is not very flexible. Recent research has shown that moving-average functions may be used to generate a large class of valid, flexible variogram models, and that they can also be used to generate valid cross-variograms that are compatible with component variograms. There are several problems with the moving-average approach, including large numbers of parameters and difficulties with integration. This article shows how the fast Fourier Transform (FFT) solves these problems. The flexible moving-average function that we consider is composed of many small rectangles, which eliminates the integration problem. The FFT allows us to compute the crossvariogram on a set of discrete lags; we show how to interpolate the cross-variogram for any continuous lag, which allows us to fit flexible models using standard minimization routines. Simulation examples are given to demonstrate the methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)

This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds.     The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...

متن کامل

Multivariate geostatistical estimation using minimum spatial cross-correlation factors (Case study: Cubuk Andesite quarry, Ankara, Turkey)

The quality properties of andesite (Unit Volume Weight, Uniaxial Compression Strength, Los500, etc.) are required to determine the exploitable blocks and their sequence of extraction. However, the number of samples that can be taken and analyzed is restricted, and thus the quality properties should be estimated at unknown locations. Cokriging has been traditionally used in the estimation of spa...

متن کامل

Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method

The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...

متن کامل

Assessment of soil property spatial variation based on the geostatistical simulation

The main objective in the present study was to assess the spatial variation of chemical and physical soil properties and then use this information to select an appropriate area to install a pasture rehabilitation experiment in the Zereshkin region, Iran. A regular 250 m grid was used for collecting a total of 150 soil samples (from 985 georeferenced soil pits) at 0 to 30, and 30 to 60 cm layers...

متن کامل

A parallel computing approach to fast geostatistical areal interpolation

Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of (target) units. Geostatistical areal interpolation employs spatial prediction algorithms, that is, variants of Kriging, which explicitly incorporate spatial autocorrelation and scale differences between source and target units in the interpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017