Identification of cellular sections with imaging mass spectrometry following freeze fracture.

نویسندگان

  • Thomas P Roddy
  • Donald M Cannon
  • Sara G Ostrowski
  • Nicholas Winograd
  • Andrew G Ewing
چکیده

Freeze-fracture techniques have been used to maintain chemical heterogeneity of frozen-hydrated mammalian cells for static TOF-SIMS imaging. The effects the fracture plane has on scanning electron microscopy and dynamic SIMS images of cells have been studied, but the implications this preparation method has on static SIMS have not been addressed to date. Interestingly, the chemical specificity and surface sensitivity of TOF-SIMS have allowed the identification of unique sections of rat pheochromocytoma cells exposed to the sample surface during freeze fracture. Using the extensive chemical information of the fractured surface, cellular sections have been determined using TOF-SIMS images of water, sodium, potassium, hydrocarbons, phosphocholine, and DiI, a fluorescent dye that remains in the outer leaflet of the cell membrane. Higher amounts of potassium have been imaged inside a cell versus the surrounding matrix in a cross-fractured cell. In other fractures exposing the cell membrane, phosphocholine and DiI have been imaged on the outer leaflet of the cell membrane, while phosphocholine alone has been imaged on the inner leaflet. In this paper, we discuss how imaging mass spectrometry isused to uniquely distinguish three possible sections of cells obtained during freeze fracture. The identification of these sections is important in choosing cells with a region of interest, like the cell membrane, exposed to the surface for a more thorough investigation with imaging static TOF-SIMS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass spectrometry imaging of freeze-dried membrane phospholipids of dividing Tetrahymena pyriformis.

Time of Flight secondary ion mass spectrometry (TOF-SIMS) has been used to explore the distribution of phospholipids in the plasma membrane of Tetrahymena pyriformis during cell division. The dividing cells were freeze dried prior to analysis followed by line scan and region of interest analysis at various stages of cell division. The results showed no signs of phospholipid domain formation at ...

متن کامل

The composition of bovine peritubular dentin: matching TOF-SIMS, scanning electron microscopy and biochemical component distributions. New light on peritubular dentin function.

Peritubular dentin (PTD) is a hypermineralized phase within the dentinal tubules in some vertebrate teeth as an interface between the intertubular dentin (ITD) and the cell processes. Our aim has been to understand the composition, structure and role of PTD as a mineralized tissue. We have utilized the technique of time of flight secondary ion mass spectrometry (TOF-SIMS) to map the distributio...

متن کامل

Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry

Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application,...

متن کامل

Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry.

Bioanalytical imaging techniques have been employed to investigate cellular composition at the single-cell and subcellular regimes. Four imaging modes have been performed sequentially in situ to demonstrate the utility of a more integrated approach to imaging cells. The combination of bright-field, scanning ion, and fluorescence microscopy complements TOF-SIMS imaging of native biomolecules. Br...

متن کامل

Synergistic cellular toxicity and uptake effects of iodixanol conjugated to anionic linear globular dendrimer G2

Objective(s): Early diagnosis of cancer using noninvasive imaging techniques has been discussed in several recent studies. The present study aimed to assess the synergistic effects of iodixanol-conjugated polyethylene glycol (PEG)-citrate (anionic linear globular) dendrimer G2 on MCF-7 breast cancer cells and human embryonic kidney 293 (HEK293) cells. Materials and Methods: PEG-citrate de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 74 16  شماره 

صفحات  -

تاریخ انتشار 2002