Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential.

نویسندگان

  • Yuval Rinkevich
  • Graham G Walmsley
  • Michael S Hu
  • Zeshaan N Maan
  • Aaron M Newman
  • Micha Drukker
  • Michael Januszyk
  • Geoffrey W Krampitz
  • Geoffrey C Gurtner
  • H Peter Lorenz
  • Irving L Weissman
  • Michael T Longaker
چکیده

Dermal fibroblasts represent a heterogeneous population of cells with diverse features that remain largely undefined. We reveal the presence of at least two fibroblast lineages in murine dorsal skin. Lineage tracing and transplantation assays demonstrate that a single fibroblast lineage is responsible for the bulk of connective tissue deposition during embryonic development, cutaneous wound healing, radiation fibrosis, and cancer stroma formation. Lineage-specific cell ablation leads to diminished connective tissue deposition in wounds and reduces melanoma growth. Using flow cytometry, we identify CD26/DPP4 as a surface marker that allows isolation of this lineage. Small molecule-based inhibition of CD26/DPP4 enzymatic activity during wound healing results in diminished cutaneous scarring. Identification and isolation of these lineages hold promise for translational medicine aimed at in vivo modulation of fibrogenic behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts

BACKGROUND Excessive accumulation of extracellular matrix (ECM) proteins is the hallmark of fibrotic diseases, including skin fibrosis. This response relies on the activation of dermal fibroblasts that evolve into a pro-fibrogenic phenotype. One of the major players in this process is the cytokine transforming growth factor-β (TGF-β). MicroRNAs (miRNAs) are small non-coding RNAs that post-trans...

متن کامل

Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis

The mechanisms by which microvascular damage leads to dermal fibrosis in diffuse cutaneous systemic sclerosis (dcSSc) are unclear. We hypothesized that microvascular pericytes constitute a cellular link between microvascular damage and fibrosis by transdifferentiating into myofibroblasts. We used a combination of immunohistochemistry and double immunofluorescence labelling of frozen skin biopsi...

متن کامل

Key Fibrogenic Signaling

Fibrosis is defined as an excessive accumulation of extracellular matrix components that lead to the destruction of organ architecture and impairment of organ function. Moreover, fibrosis is an intricate process attributable to a variety of interlaced fibrogenic signals and intrinsic mechanisms of activation of myofibroblasts. Being the dominant matrix-producing cells in organ fibrosis, myofibr...

متن کامل

Human eosinophils regulate human lung- and skin-derived fibroblast properties in vitro: a role for transforming growth factor beta (TGF-beta).

Eosinophils have been associated with fibrosis. To investigate their direct role in fibrosis, human peripheral blood eosinophil sonicate was added to human lung or dermal fibroblasts, and proliferation ([(3)H]thymidine) and collagen synthesis ([(3)H]proline) were evaluated. Proliferation was enhanced significantly in the monolayers in a dose-dependent manner. The activity of the eosinophil fibr...

متن کامل

S100A9 aggravates bleomycin-induced dermal fibrosis in mice via activation of ERK1/2 MAPK and NF-κB pathways

Objective(s): This study aims to investigate the pathogenicity and possible mechanisms of S100A9 function in mice models of scleroderma. Materials and Methods: The content of S100A9 in the skin tissues of mice with scleroderma was determined. Different concentrations of bleomycin (BLM) and S100A9 were subcutaneously injected into the backs of mice simultaneously, and then pathological changes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 348 6232  شماره 

صفحات  -

تاریخ انتشار 2015