Markov Types and Minimax Redundancy for Markov Sources ∗ March 27 , 2004

نویسندگان

  • Philippe Jacquet
  • Wojciech Szpankowski
چکیده

Redundancy of universal codes for a class of sources determines by how much the actual code length exceeds the optimal code length. In the minimax scenario one designs the best code for the worst source within the class. Such minimax redundancy comes in two flavors: average minimax or worst case minimax. We study the worst case minimax redundancy of universal block codes for Markovian sources of any order. We prove that the maximal minimax redundancy for Markov sources of order r is asymptotically equal to 12m (m − 1) log2 n + log2 Am − (ln lnm)/ lnm + o(1), where n is the length of a source sequence, m is the size of the alphabet and Am is an explicit constant (e.g., we find that for a binary alphabet m = 2 and Markov of order r = 1 the constant A2 = 16 ·G ≈ 14.655449504 where G is the Catalan number). Unlike previous attempts, we view the redundancy problem as an asymptotic evaluation of certain sums over a set of matrices representing Markov types. The enumeration of Markov types is accomplished by reducing it to counting Eulerian paths in a multigraph. In particular, we propose exact and asymptotic formulas for the number of strings of a given Markov type. All of these findings are obtained by analytic and combinatorial tools of analysis of algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Types and Minimax Redundancy for Markov Sources ∗ December 6 , 2003

Redundancy of universal codes for a class of sources determines by how much the actual code length exceeds the optimal code length. In the minimax scenario one designs the best code for the worst source within the class. Such minimax redundancy comes in two flavors: either on average or for individual sequences. The latter is also known as the maximal or the worst case minimax redundancy. We st...

متن کامل

Asymptotically minimax regret by Bayes mixtures - Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on

We study the problem of data compression, gambling and prediction of a sequence zn = z1z2 ... z, from a certain alphabet X , in terms of regret [4] and redundancy with respect to a general exponential family, a general smooth family, and also Markov sources. In particular, we show that variants of Jeffreys mixture asymptotically achieve their minimax values. These results are generalizations of...

متن کامل

Source matching problems revisited

The source matching problem is to find the minimax codes that minimize the maximum redundancies over classes of sources where relative entropy (cross entropy, discrimination information) is adopted as a criterion to measure the redundancy. The convergence of a simple approach different from Davisson and Leon-Garcia’s algorithm for finding such minimax codes is presented and shown. This approach...

متن کامل

Cold standby redundancy optimization for nonrepairable series-parallel systems: Erlang time to failure distribution

In modeling a cold standby redundancy allocation problem (RAP) with imperfect switching mechanism, deriving a closed form version of a system reliability is too difficult. A convenient lower bound on system reliability is proposed and this approximation is widely used as a part of objective function for a system reliability maximization problem in the literature. Considering this lower bound do...

متن کامل

Redundancy of unbounded memory Markov classes with continuity conditions

We study the redundancy of universally compressing strings X1, . . . ,Xn generated by a binary Markov source p without any bound on the memory. To better understand the connection between compression and estimation in the Markov regime, we consider a class of Markov sources restricted by a continuity condition. In the absence of an upper bound on memory, the continuity condition implies that p(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008