Hermite and Laguerre Polynomials and Matrix- Valued Stochastic Processes

نویسنده

  • STEPHAN LAWI
چکیده

Abstract We extend to matrix-valued stochastic processes, some well-known relations between realvalued diffusions and classical orthogonal polynomials, along with some recent results about Lévy processes and martingale polynomials. In particular, joint semigroup densities of the eigenvalue processes of the generalized matrix-valued Ornstein-Uhlenbeck and squared OrnsteinUhlenbeck processes are respectively expressed by means of the Hermite and Laguerre polynomials of matrix arguments. These polynomials also define martingales for the Brownian matrix and the generalized Gamma process. As an application, we derive a chaotic representation property for the eigenvalue process of the Brownian matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Invitation to Matrix Valued Spherical Functions: Linearization of Products in the Case of the Complex Projective Space P2(c)

The classical (scalar valued) theory of spherical functions (put forward by Cartan and others after him) allows one to unify under one roof a number of examples that were very well known before the theory was formulated. These examples include many special functions like Jacobi polynomials, Bessel functions, Laguerre polynomials, Hermite polynomials, Legendre functions, etc. All these functions...

متن کامل

Some Relations on Laguerre Matrix Polynomials

The main object of this paper is to give a di erent approach to proof of generating matrix functions for Laguerre matrix polynomials. We also obtain the hypergeometric matrix representations, addition theorem, nite summation formula and an integral representation for Laguerre matrix polynomials. We get the relations between Laguerre, Legendre and Hermite matrix polynomials. We get the generatin...

متن کامل

Time – space harmonic polynomials relative to a Lévy process

Given a stochastic process X = {Xt, t ∈ R+} with finite moments of convenient order, a time–space harmonic polynomial relative to X is a polynomial Q(x, t) such that the process Mt =Q(Xt, t) is a martingale with respect to the filtration associated with X . Major examples are the Hermite polynomials relative to a Brownian motion, the Charlier polynomials relative to a Poisson process and the La...

متن کامل

Application of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations

In this study‎, ‎an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials‎. ‎Properties of these polynomials and operational matrix of integration are first presented‎. ‎These properties are then used to transform the integral equation to a matrix equation which corresponds t...

متن کامل

Eigenvalues of Hermite and Laguerre ensembles: Large Beta Asymptotics

In this paper we examine the zero and first order eigenvalue fluctuations for the β-Hermite and β-Laguerre ensembles, using the matrix models we described in [5], in the limit as β → ∞. We find that the fluctuations are described by Gaussians of variance O(1/β), centered at the roots of a corresponding Hermite (Laguerre) polynomial. We also show that the approximation is very good, even for sma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008