Monotonicity of Primal - Dual Interior - Point Algorithms for Semide nite Programming Problems ?
نویسنده
چکیده
We present primal-dual interior-point algorithms with polynomial iteration bounds to nd approximate solutions of semidenite programming problems. Our algorithms achieve the current best iteration bounds and, in every iteration of our algorithms, primal and dual objective values are strictly improved.
منابع مشابه
Symmetric primal dual path following algorithms for semide nite programming
We propose a framework for developing and analyzing primal dual interior point algorithms for semide nite programming This framework is an extension of the v space approach that was de veloped by Kojima et al for linear complementarity problems The extension to semide nite programming allows us to interpret Nesterov Todd type directions as Newton search direc tions Our approach does not involve...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملNumerical Evaluation of SDPA (
SDPA (SemiDe nite Programming Algorithm) is a C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method for solving the standard form semide nite program and its dual. We report numerical results of large scale problems to evaluate its performance, and investigate how major time-consuming parts of SDPA vary with the problem size, the number of constraints and t...
متن کاملPrimal-dual Aane-scaling Algorithms Fail for Semideenite Programming
In this paper, we give an example of a semide nite programming problem in which primaldual a ne-scaling algorithms using the HRVW/KSH/M, MT, and AHO directions fail. We prove that each of these algorithm can generate a sequence converging to a non-optimal solution, and that, for the AHO direction, even its associated continuous trajectory can converge to a non-optimal point. In contrast with th...
متن کاملSemideenite Programming
In semide nite programming one minimizes a linear function subject to the constraint that an a ne combination of symmetric matrices is positive semide nite. Such a constraint is nonlinear and nonsmooth, but convex, so semide nite programs are convex optimization problems. Semide nite programming uni es several standard problems (e.g., linear and quadratic programming) and nds many applications ...
متن کامل