Reliability and durability from large heat recovery steam generators
نویسندگان
چکیده
Experience with heat recovery steam generators (HRSGs) designed for larger-heat-input and higher-steam conditions highlights limitations in some features of traditional designs extrapolated from smaller HRSGs that operated predominantly continuously. Many combined-cycle units may be subjected to periods of regular overnight shut-down much earlier than expected and, unless anticipated during the initial design, there will be significant adverse impact on reliability and durability. Very premature problems already experienced on large HRSG designs in combined-cycle and cogeneration applications give an early warning that more widespread problems will arise as HRSGs are subjected to more thermal cycling. Problems that arise when inadequate attention is given to transient conditions over the full range of operation of the combined-cycle gas turbine unit, including at part loads, during shut-downs and restarts from diverse pre-start conditions, are highlighted. The paper gives examples of how the damage to HRSGs during shut-down and starts can be mitigated by minor modifications and sympathetic operating procedures and suggests how prudent purchasers can enhance reliability and lower lifetime costs at a small premium in installed cost by specification of appropriate design features. Other weaknesses which cause problems for operation and maintenance are discussed.
منابع مشابه
Multi-objective optimization of heat recovery steam generators
In this paper, a multi-objective method is used to optimize a heat recovery steam generator (HRSG). Two objective functions have been used in the optimization, which are irreversibility and HRSG equivalent volume. The former expresses the exergetic efficiency and the latter demonstrates the cost of the HRSG. Decision variables are geometric and operational parameters of the HRSG. The result...
متن کاملMulti-objective optimization of heat recovery steam generators
In this paper, a multi-objective method is used to optimize a heat recovery steam generator (HRSG). Two objective functions have been used in the optimization, which are irreversibility and HRSG equivalent volume. The former expresses the exergetic efficiency and the latter demonstrates the cost of the HRSG. Decision variables are geometric and operational parameters of the HRSG. The results of...
متن کاملModeling and Process Analysis of a Biomass Gasifier-Molten Carbonate Fuel Cell-Gas Turbine-Steam Turbine Cycle as a Green Hybrid Power Generator
Fuel cell-based hybrid cycles that include conventional power generators have been created to modify energy performance and output power. In the present paper, integrated biomass gasification (IBG)-molten carbonate fuel cell (MCFC)-gas turbine (GT) and steam turbine (ST) combined power cycle is introduced as an innovative technique in terms of sustainable energy. In addition, biomass gasificati...
متن کاملChemical Cleaning of Fossil Power Station Steam Generators; Past, Present and Future
Technology for chemical cleaning of steam generators at fossil stations was developed during the latter half of the 20 century. Cleaning solvents and processes were developed for application to conventional boilers. The new fleet of combined cycle generating units with heat recovery steam generators (HRSGs) has raised questions concerning the applicability of technology developed for use in con...
متن کاملA steam Rankine cycle with two-stage pumping to enhance the waste heat recovery from internal combustion engines
In this research, a high-temperature Rankin cycle (HTRC) with two-stage pumping is presented and investigated. In this cycle, two different pressures and mass flow rates in the HTRC result in two advantages. First, the possibility of direct recovery from the engine block by working fluid of water, which is a low quality waste heat source, is created in a HTRC. Secondly, by doing this, the mean ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999