Improving HOG with Image Segmentation: Application to Human Detection
نویسندگان
چکیده
In this paper we improve the histogram of oriented gradients (HOG), a core descriptor of state-of-the-art object detection, by the use of higher-level information coming from image segmentation. The idea is to re-weight the descriptor while computing it without increasing its size. The benefits of the proposal are two-fold: (i) to improve the performance of the detector by enriching the descriptor information and (ii) take advantage of the information of image segmentation, which in fact is likely to be used in other stages of the detection system such as candidate generation or refinement. We test our technique in the INRIA person dataset, which was originally developed to test HOG, embedding it in a human detection system. The well-known segmentation method, mean-shift (from smaller to larger super-pixels), and different methods to re-weight the original descriptor (constant, region-luminance, color or texture-dependent) has been evaluated. We achieve performance improvements of 4.47% in detection rate through the use of differences of color between contour pixel neighborhoods as re-weighting function.
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملPerformance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملHuman Detection using HOG Features of Head and Shoulder Based on Depth Map
Conventional moving objects detection and tracking using visible light image was often affected by the change of moving objects, change of illumination conditions, interference of complex backgrounds, shaking of camera, shadow of moving objects and moving objects of selfocclusion or mutual-occlusion phenomenon. We propose a human detection method using HOG features of head and shoulder based on...
متن کاملSIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کامل