Estimating Uncertainty in Global Mercury Emission Source and Deposition Receptor Relationships
نویسندگان
چکیده
Establishing mercury (Hg) source-receptor (SR) relationship matrices provides a tool to improve the understanding of the geographic relationship between regions of Hg release and its eventual deposition. SR relationship matrices are therefore a useful starting point for the development of policies aimed at reducing the impact of Hg emissions from anthropogenic activities (Hganthr) on sensitive ecosystems and areas potentially at risk of Hg contamination. A global Chemical Transport Model (CTM) has been used to simulate the emission, transport and fate of Hganthr from 12 source regions, considering a range of uncertainty in the modelled chemical and physical processes. This ensemble of simulations gives an estimate of the Hg deposition which derives from each source region, as well as an estimate of the uncertainty of the calculated deposition flux. The uncertainty has been calculated using the bootstrap method to estimate this uncertainty in terms of the normalised confidence interval amplitude of the mean (NCIAM). Within the calculated confidence ranges, for almost all regions the contribution to the Hg deposition flux from remote sources is greater than that from domestic sources. Europe and South Asia, where the contributions are statistically indistinguishable, are exceptions, as is East Asia, with local sources dominating the Hg deposition flux. East Asia is the single most important remote source region for most receptor regions. The results yield such high uncertainties in the deposition flux for many receptor regions that the results are unlikely to be taken into consideration by policy makers. This uncertainty is particularly relevant when considering the “domestic” contribution to regional deposition, highlighting the need for more studies to resolve remaining uncertainties in the atmospheric Hg cycle, and Hganthr emission inventories.
منابع مشابه
Global source-receptor relationships for mercury deposition under present-day and 2050 emissions scenarios.
Global policies regulating anthropogenic mercury require an understanding of the relationship between emitted and deposited mercury on intercontinental scales. Here, we examine source-receptor relationships for present-day conditions and four 2050 IPCC scenarios encompassing a range of economic development and environmental regulation projections. We use the GEOS-Chem global model to track merc...
متن کاملA synthesis of progress and uncertainties in attributing the sources of mercury in deposition.
A panel of international experts was convened in Madison, Wisconsin, in 2005, as part of the 8th International Conference on Mercury as a Global Pollutant. Our charge was to address the state of science pertinent to source attribution, specifically our key question was: "For a given location, can we ascertain with confidence the relative contributions of local, regional, and global sources, and...
متن کاملGlobal 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition
[1] We develop a mechanistic representation of land-atmosphere cycling in a global 3-D ocean-atmosphere model of mercury (GEOS-Chem). The resulting land-oceanatmosphere model is used to construct preindustrial and present biogeochemical cycles of mercury, to examine the legacy of past anthropogenic emissions, to map anthropogenic enrichment factors for deposition, and to attribute mercury depos...
متن کاملContributions of global and regional sources to mercury deposition in New York State.
A modeling system that includes a global chemical transport model (CTM) and a nested continental CTM (TEAM) was used to simulate the atmospheric transport, transformations and deposition of mercury (Hg). Three scenarios were used: (1) a nominal scenario, (2) a scenario conducive to local deposition and (3) a scenario conducive to long-range transport. Deposition fluxes of Hg were analyzed at th...
متن کاملLong-range transport of acidifying substances in East Asia—Part II Source– receptor relationships
Region-to-grid source–receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were...
متن کامل