Simulating Univariate and Multivariate Nonnormal Distributions through the Method of Percentiles.
نویسندگان
چکیده
This article derives a standard normal-based power method polynomial transformation for Monte Carlo simulation studies, approximating distributions, and fitting distributions to data based on the method of percentiles. The proposed method is used primarily when (1) conventional (or L) moment-based estimators such as skew (or L-skew) and kurtosis (or L -kurtosis) are unknown or (2) data are unavailable but percentiles are known (e.g., standardized test score reports). The proposed transformation also has the advantage that solutions to polynomial coefficients are available in simple closed form and thus obviates numerical equation solving. A procedure is also described for simulating power method distributions with specified medians, inter-decile ranges, left-right tail-weight ratios (skew function), tail-weight factors (kurtosis function), and Spearman correlations. The Monte Carlo results presented in this study indicate that the estimators based on the method of percentiles are substantially superior to their corresponding conventional product-moment estimators in terms of relative bias. It is also shown that the percentile power method can be modified for generating nonnormal distributions with specified Pearson correlations. An illustration shows the applicability of the percentile power method technique to publicly available statistics from the Idaho state educational assessment.
منابع مشابه
Simulating Univariate and Multivariate Tukey g-and-h Distributions Based on the Method of Percentiles
متن کامل
Simulating Multivariate Nonnormal Data Using an Iterative Algorithm.
Simulating multivariate nonnormal data with specified correlation matrices is difficult. One especially popular method is Vale and Maurelli's (1983) extension of Fleishman's (1978) polynomial transformation technique to multivariate applications. This requires the specification of distributional moments and the calculation of an intermediate correlation matrix such that when data are transforme...
متن کاملA Percentile-Based Power Method in SAS: Simulating Multivariate Non-normal Continuous Distributions
The conventional power method transformation is a moment-matching technique that simulates non-normal distributions with controlled measures of skew and kurtosis. The percentile-based power method is an alternative that uses the percentiles of a distribution in lieu of moments. This article presents a SAS/IML macro that implements the percentile-based power method.
متن کاملAsymmetric Univariate and Bivariate Laplace and Generalized Laplace Distributions
Alternative specifications of univariate asymmetric Laplace models are described and investigated. A more general mixture model is then introduced. Bivariate extensions of these models are discussed in some detail, with particular emphasis on associated parameter estimation strategies. Multivariate versions of the models are briefly introduced.
متن کاملOn simulating multivariate non-normal distributions from the generalized lambda distribution
The class of generalized lambda distributions (GLDs) is primarily used for modeling univariate real-world data. The GLD has not been as popular as some other methods for simulating observations from multivariate distributions because of computational difficulties. In view of this, the methodology and algorithms are presented for extending the GLD from univariate to multivariate data generation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multivariate behavioral research
دوره 50 2 شماره
صفحات -
تاریخ انتشار 2015