Anti-oxidation Treatment of Ultra High Molecular Weight Polyethylene Components to Decrease Periprosthetic Osteolysis: Evaluation of Osteolytic and Osteogenic Properties of Wear Debris Particles in a Murine Calvaria Model

نویسندگان

  • Justin M. Green
  • Nadim J. Hallab
  • Yen-Shuo Liao
  • Venkat Narayan
  • Edward M. Schwarz
  • Chao Xie
چکیده

Wear debris-induced osteolysis remains the greatest limitation of long-term success for total joint replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. To address oxidative degradation post-gamma irradiation, manufacturers are investigating the incorporation of antioxidants into PE resins. Similarly, larger molecular weight monomers have been developed to increase crosslinking and decrease wear debris, and ultimately osteolysis. However, the effects of modifying monomer size, crosslink density, and antioxidant incorporation on UHMWPE particle-induced osteoclastic bone resorption and coupled osteoblastic bone formation have never been tested. Here, we review the field of antioxidant-containing UHMWPE, and present an illustrative pilot study evaluating the osteolytic and osteogenic potential of wear debris generated from three chemically distinct particles (MARATHON®, XLK, and AOX™) as determined by a novel 3D micro-CT algorithm designed for the murine calvaria model. The results demonstrate an approach by which the potential osteoprotective effects of antioxidants in UHMWPE can be evaluated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone-Implant Interface Biology ―― Foreign Body Reaction and Periprosthetic Osteolysis in Artificial Hip Joints――

Aseptic loosening and periprosthetic osteolysis are major problems in artificial hip joint surgery,for which a solution has yet to be found. Biological host response to wear debris combined with cyclic mechanical loading onto the bone bed around hip prosthetic implants has been considered as mechanism responsible for implant-mediated periprosthetic osteolysis. Any type of artificial joint glidi...

متن کامل

Polyethylene particles from a hip simulator cause (45)Ca release from cultured bone.

Periprosthetic osteolysis is a dominant factor in the success or failure of total hip prostheses. Polyethylene wear debris has been implicated in the process of bone resorption and subsequent implant loosening. The present study is the first to examine the effect of ultra high molecular weight polyethylene (UHMWPE) wear debris produced by a hip simulator on calvarial bone resorption in vitro. (...

متن کامل

Polyethylene Particles Induce Osteolysis in Calvaria of Wild-type Andimmunodeficient Mice

Introduction: Osteolysis around orthopaedic implants, a consequence of the wear process, is a major problem for the long-term survival of the implants. We and others previously reported quantitative versions of the murine calvarial model of titanium particle induced osteolysis [1,2]. However, the most common particle type that is generated from orthopaedic implants is ultrahigh molecular weight...

متن کامل

Effects of SU5416 and a vascular endothelial growth factor neutralizing antibody on wear debris-induced inflammatory osteolysis in a mouse model

BACKGROUND The development of highly vascularized and inflammatory periprosthetic tissue characterizes the progress of aseptic loosening, a major complication of joint arthroplasty. Vascular endothelial growth factor (VEGF) is an important cell signaling protein involved in angiogenesis. The purpose of this study was to investigate whether R2/Fc (a VEGF neutralizing antibody) and SU5416 (a VEGF...

متن کامل

Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted onto murine calvaria.

Periprosthetic osteolysis is a serious problem that limits long-term survival of total hip arthroplasty. Ceramics have been introduced as a joint surface material to reduce osteolysis due to wear particles. The aim of this study is to investigate the biological reaction of ceramic particles on murine calvarial bone, in comparison with polyethylene and titanium particles. Sixty CL/BL6 mice were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013