Heffter Arrays and Biembedding Graphs on Surfaces
نویسنده
چکیده
A Heffter array is an m× n matrix with nonzero entries from Z2mn+1 such that i) every row and column sum to 0, and ii) exactly one of each pair {x,−x} of nonzero elements appears in the array. We construct some Heffter arrays. These arrays are used to build current graphs used in topological graph theory. In turn, the current graphs are used to embed the complete graph K2mn+1 so that the faces can be 2-colored, called a biembedding. Under certain conditions each color class forms a cycle system. These generalize biembeddings of Steiner triple systems. We discuss some variations including Heffter arrays with empty cells, embeddings on nonorientable surfaces, complete multigraphs, and using integer arithmetic in place of modular arithmetic.
منابع مشابه
Biembedding Steiner triple systems and n-cycle systems on orientable surfaces
In 2015, Archdeacon introduced the notion of Heffter arrays and showed the connection between Heffter arrays and biembedding m-cycle and an n-cycle systems on a surface. In this paper we exploit this connection and prove that for every n ≥ 3 there exists an orientable embedding of the complete graph on 6n+1 vertices with each edge on both a 3-cycle and an n-cycle. We also give an analogous (but...
متن کاملBiembeddings of 2-Rotational Steiner Triple Systems
It is shown that for v ≡ 1 or 3 (mod 6), every pair of Heffter difference sets modulo v gives rise to a biembedding of two 2-rotational Steiner triple systems of order 2v + 1 in a nonorientable surface. AMS classification: 05C10.
متن کاملSquare integer Heffter arrays with empty cells
A Heffter array H(m,n; s, t) is an m× n matrix with nonzero entries from Z2ms+1 such that i) each row contains s filled cells and each column contains t filled cells, ii) every row and column sum to 0, and iii) no element from {x,−x} appears twice. Heffter arrays are useful in embedding the complete graph K2nm+1 on an orientable surface where the embedding has the property that each edge border...
متن کاملBiembeddings of Metacyclic Groups and Triangulations of Orientable Surfaces by Complete Graphs
For each integer n > 3, n 6= 4, for each odd integer m > 3, and for any λ ∈ Zn of (multiplicative) order m′ where m′ | m, we construct a biembedding of Latin squares in which one of the squares is the Cayley table of the metacyclic group Zm nλ Zn. This extends the spectrum of Latin squares known to be biembeddable. The best existing lower bounds for the number of triangular embeddings of a comp...
متن کاملIsolation and Study of S-layer Nanostructure of Deinococcus Radiodurans R1
Crystalline surface layer proteins (S-layer proteins) have considerable potential for the crystalline arrays in biotechnology, biomimetics and nonlife applications, including areas such as microelectronics and molecular nanotechnology. The extensive application potential of surface layers in nanobiotechnology is according to the particular inherent attributes of the single molecular arrays cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015