Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci
نویسندگان
چکیده
CCCTC-binding factor (CTCF) is largely responsible for the 3D architecture of the genome, in concert with the action of cohesin, through the creation of long-range chromatin loops. Cohesin is hypothesized to be the main driver of these long-range chromatin interactions by the process of loop extrusion. Here, we performed ChIP-seq for CTCF and cohesin in two stages each of T and B cell differentiation and examined the binding pattern in all six antigen receptor (AgR) loci in these lymphocyte progenitors and in mature T and B cells, ES cells, and fibroblasts. The four large AgR loci have many bound CTCF sites, most of which are only occupied in lymphocytes, while only the CTCF sites at the end of each locus near the enhancers or J genes tend to be bound in non-lymphoid cells also. However, despite the generalized lymphocyte restriction of CTCF binding in AgR loci, the Igκ locus is the only locus that also shows significant lineage-specificity (T vs. B cells) and developmental stage-specificity (pre-B vs. pro-B) in CTCF binding. We show that cohesin binding shows greater lineage- and stage-specificity than CTCF at most AgR loci, providing more specificity to the loops. We also show that the culture of pro-B cells in IL7, a common practice to expand the number of cells before ChIP-seq, results in a CTCF-binding pattern resembling pre-B cells, as well as other epigenetic and transcriptional characteristics of pre-B cells. Analysis of the orientation of the CTCF sites show that all sites within the large V portions of the Igh and TCRβ loci have the same orientation. This suggests either a lack of requirement for convergent CTCF sites creating loops, or indicates an absence of any loops between CTCF sites within the V region portion of those loci but only loops to the convergent sites at the D-J-enhancer end of each locus. The V region portions of the Igκ and TCRα/δ loci, by contrast, have CTCF sites in both orientations, providing many options for creating CTCF-mediated convergent loops throughout the loci. CTCF/cohesin loops, along with transcription factors, drives contraction of AgR loci to facilitate the creation of a diverse repertoire of antibodies and T cell receptors.
منابع مشابه
Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development.
Contraction of the large Igh and Igkappa loci brings all V genes, spanning >2.5 Mb in each locus, in proximity to DJ(H) or J(kappa) genes. CCCTC-binding factor (CTCF) is a transcription factor that regulates gene expression by long-range chromosomal looping. We therefore hypothesized that CTCF may be crucial for the contraction of the Ig loci, but no CTCF sites have been described in any V loci...
متن کاملDNA-binding factor CTCF and long-range gene interactions in V(D)J recombination and oncogene activation.
Regulation of V(D)J recombination events at immunoglobulin (Ig) and T-cell receptor loci in lymphoid cells is complex and achieved via changes in substrate accessibility. Various studies over the last year have identified the DNA-binding zinc-finger protein CCCTC-binding factor (CTCF) as a crucial regulator of long-range chromatin interactions. CTCF often controls specific interactions by preve...
متن کاملThe measurement technologies of thyrotropin receptor antibodies from the past to the present
Thyroid Stimulating Hormone Receptor (TSH-R) autoantibodies are the main cause of Graveschr('39') disease and its external thyroid manifestations such as ophtalmopathy and dermatopathy. These antibodies are functionally different and are commonly called TSH receptor antibodies (TRAbs). In fact, TRAbs are a set of autoantibodies including TSHR-stimulating antibodies (TSAbs), TSHR- blocking antib...
متن کاملBioinformatic Evaluation of miR-222-3p Specificity in Binding to Genes Involved in Acute Lymphoblastic Leukemia in Children
Background and Objectives: Acute lymphocytic leukemia (ALL) is a type of cancer that affects white blood cells. The disease progresses rapidly mandating immediate treatment. ALL is the most common type of leukemia affecting children. An increase in the miR-222-3p molecule has been observed in the course of this disease. The microarray method can be used to examine the binding of this miRNA and ...
متن کاملArchitectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment
Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here, we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3D interactions that undergo marked reorganization at the subme...
متن کامل